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Figure 1: A dynamic video narrative of a dance sequence from the nttepy Go Lovely1951) is constructed as a composition of five
mosaics. Each mosaic comprises several frames stitched together liglhiglifferent stages of a performance.

Abstract ratives are intrinsically linear and they are meant to tell a story.
Schmandt-Besserat, in her bodkhen Writing Met ArfSchmandt-
This paper presents a system for generating dynamic narrativesBesserat 2007], argues that the invention of writing coincided with
from videos. These narratives are characterized for being campac the adoption of linear art compositions to tell a story. The structure
coherent and interactive, as inspired by principles of sequential art. borrowed from writing made these compositions linear and direc-
Narratives depict the motion of one or several actors over time. Cre- tion became time. The linear flow of images, continuity and selec-
ating compact narratives is challenging as it is desired to combine tive repetition of characters are some of the principles that survived
the video frames in a way that reuses redundant backgrounds andhrough the middle ages, as seen in the Bayeux tapestry (Fig.2(b)),
depicts the stages of a motion. In addition, previous approachesto modern days in the form of comics [McCloud 1994]. Scientific
focus on the generation of static summaries and can afford expen-painting and illustrations have also borrowed these design elements
sive image composition techniques. A dynamic narrative, on the to present unique compositions of extreme scale time lines, such
other hand, must be played and skimmed in real-time, which im- as the evolution of life and geologic time. An exampldise Age
poses certain cost limitations in the video processing. In this paper, of ReptilesMural, by Rudolph Zallinger, which depicts the evolu-
we define a novel process to compose foreground and backgroundion of reptiles from the Devonian period to the age of dinosaurs
regions of video frames in a single interactive image using a se- (Fig.2(a)). Despite the changes in perspective and scale, the mural
ries of spatio-temporal masks. These masks are created to improvegives the impression of a single coherent scene.
the output of automatic video processing techniques such as image
stitching and foreground segmentation. Unlike hand-drawn narra- In today’s era of data explosion, videos and animations are becom-
tives, often limited to static representations, the proposed systeming ubiquitous and the ability to display long video sequences in
allows users to explore the narrative dynamically and produce dif- a single narrative becomes useful. As static representations, these
ferent representations of motion. We have built an authoring system narratives summarize sports events, help elucidate the plot of a short
that incorporates these methods and demonstrated successful resultsovie and contextualize the evolution of a location captured by a
on a number of video clips. The authoring system can be used tovideo camera. But as dynamic representations, these timelines also
create interactive posters of video clips, browse video in a compact help understand individual actions within the appropriate context.
manner or highlight a motion sequence in a movie. The essential characteristics of static timelines have been adopted
as the de facto standard for displaying thumbnails of video clips
Keywords: Video exploration, Interactive Editing, Image Com-  in editing software such as iMovie [Apple Corporation 2009]. Be-
positing, Motion Extraction, Graph-cut Optimization cause they are based on individual frames, they lack the compact-
ness and coherence that are characteristic of hand-drawn illustra-
. tions. Recent image and video collages [Rother et al. 2006; Mei
1 Introduction et al. 2009] aid to compactness, but do not convey the flow of time.
Static representations of motion [Cutting 2002; Assa et al. 2005;
The purpose of a visual timeline or a narrative is to display the Goldman et al. 2006] summarize a short action, but do not provide
passage of time by means of a sequence of images. These narthe means to explore the sequence dynamically. Other dynamic
compositions, such as panoramic video textures and photomontages
[Agarwala et al. 2004; Agarwala et al. 2005] are limited to moving
backgrounds, where there is no need to track individual actions.
This paper presents an interactive system for creating compact rep-
resentations of long video sequences in order to prodadg@amic
narrative In this sense, a video narrative is a summarization of
a long video sequence generated as a composition of individual
frames in such a way that it indicates motion and flow of time.

We aim to generateompact coherentand interactivevideo nar-
ratives. The first two principles, compactness and coherence, have
been selected based on a careful examination of the principles of
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(a) Age of reptiles mural (b) Portion of the Bayeux Tapestry

Figure 2: Examples of visual narratives. (a) Age of reptiles mural, as an exaafdinear narrative {he Age of Reptiles, a mural by Rudolph
F. Zallinger. Copyright 1966, 1975, 1985, 1989, Peabody &dus of Natural History, Yale University, New Haven, Conicett USA. All rights reserved.
Reproduced with permission). A coherent background gives the illusion of gradual change. De#pe differences in scale and perspective,
the scene appears coherent. (b) Seamless composition of sea linelsasacters gives the illusion of time flow.

sequential art and visual narratives, as suggested by ancient andn which motion can be represented, including broken symmetry,
contemporary art forms [Anderson 1961; Eisner 1985; McCloud stroboscopic images, motion blur, forward lean and action lines.
1994]. We adopt the idea of seamless transitions to convey continu-Common in comic books, forward lean and actions lines are sim-
ity. Two different scenes can be composited together by exploiting ple mechanisms to make a static image appear in motion [McCloud
natural edges in the images that serve as boundaries. In the Reptile4994], and have inspired technigques for video [Kim and Essa 2005].
mural, for example (Fig.2(a)), trees provide natural boundaries be Action lines often do not convey a wide range of motion. When ap-
tween geologic eras. In other cases, where the scene backgroundplied to video, stroboscopic images seem to be more effective, and
are similar, a seamless transition makes them appear continuouscan be obtained optically in the form of long exposure shots. As
The interactive requirement is a new component that arises with thean alternative, it is possible to obtain computational time-lapse im-
possibilities that interactive media offer. Unlike traditional narra- ages [Bennett and McMillan 2007] by assembling the frames in a
tives, we are not limited by a static representation. manner that simulates a virtual camera shutter. For general video,
. ) this issue is more complex, as the camera may move in addition to
Our system allows users to construct a narrative by composing dy-the moving objects. To obtain such motion representations, a video
namic mosaics and combining them in a linear manner. A dynamic sequence is assembled in a single panorama using a motion esti-
mosaic is a hybrid between a video panorama and a video story-mation technique, such as optical flow [Shum and Szeliski 1998]
board. With a set of spatio-temporal masks, our system selects por-or feature-based stitching [Brown and Lowe 2003]. Panoramas, of-
tions of video frames corresponding to different moving objects and e depicting a static background, have been used for cel animation
places them within a single panorama. By modifying these masks [wood et al. 1997] and to photograph long scenes [Agarwala et al.

and flow, and perform in-place playback of the video. cerpts [Taniguchi et al. 1997] seldom tell a story. More effective
panoramas can be obtained with foreground extraction, as shown
2 Related Work in Digital Photomontage [Agarwala et al. 2004] . Video panoramas

also convey motion with action lines [Irani and Anandan 1998],
toryboarding metaphors [Goldman et al. 2006], and action pose
stimation [Assa et al. 2005]. These video synopses are inherently

static. Panoramic video textures [Agarwala et al. 2005], Dynamo-

saicing [Rav-Acha et al. 2007], dynamic stills [Caspi et al. 2006]
nd non-chronological video synopses [Pritch et al. 2008] combine
he compactness of panoramas with dynamic browsing. Dynamo-

| saics create dynamic panoramas using 4D min-cuts, but are obliv-

ious to the composition of objects and background. This makes
the approach applicable to many types of video clips, but are not

intended to convey action or tell a story [Rav-Acha et al. 2007].

Aner et al. [2002] use mosaics for video browsing, while Forlines

presents a system for skimming through video frames on the re-

covered background, similar to our skimming technique [Forlines

dress the problem of video summarization as retargeting, where a2008]' However, these assume single mosaics. In our work, we
construct narratives that combine several mosaics in a single com-

video is resized into a compact summary without image cropping > ) / S
position. Instead of single frames, our visual narrative is an assem-

or scaling. Recent approaches attempt at constructing a more combI f mosai r mummary of summariesie believe that th
pact summary using collages. Inspired by image collages such as y 0Fmosaics, or aummary of summariesive believe that the

Digital Tapestry [Rother et al. 2005] and AutoCollage [Rother et al. result is a considerabl_y more compact representation of video that
2006], video collages have the additional requirement of maintain- manages to show_motl_on_and time flow. C_oncurren'tly, Bames et al.
ing temporal structure. Free-Shaped Video Collages seamlessly asIZOlo] also_ draw Inspiration from tapestries and "“?af narratives
semble multiple frames in a variety of shapes without disrupting to summarize a long V|d_eo seéquence. Usmg a continuous tempo-
their sequence in time [Yang et al. 2008; Mei et al. 2009]. These ral zoom, users can quickly browse the video at multiple scales.

approaches are intended to represent the story line in the video, butSirnilar to our narratives, s_eamles_s blending between frames_ results
they do not satisfy certain desired properties of visual narratives, '" & COmpact representation that is both aesthetically pleasing and

such as coherence and continuity. Because these approaches haﬁ?aﬁe'fmc'%m' In our work, wg :‘S”e natrratlves to convey an action
dle individual frames, they seldom convey action and flow. of shorter video sequences and tell a story.

Creating visual summaries of video sequences has been extensivel
surveyed by Li et al. [2001]. Following their taxonomy, we can

identify two lines of research, often interwoven, one dedicated to
the decomposition of a video and extraction of salient shots and
another dedicated to the assembly and representation of the vide
summary. This work is concerned with the latter. The most com-
mon approach to represent video is through the use of individua
frames, arranged in a meaningful manner. Several layouts have
been proposed, such as structure-depicting icons [Ueda et al,, 1993]
video posters [Yeung and Yeo 1997], comic-book presentations
[Boreczky et al. 2000], stained-glass visualizations [Chiu et al.

2004] and the ever-ubiquitous thumbnail sequence in software such
as iMovie [Apple Corporation 2009]. Simakov et al. [2008] ad-

The representation of motion in static images is a complex task with Although we focus on the interactive assembly of narratives, video
roots in art and science [Cutting 2002]. Cutting describes five ways summarization techniques are relevant. Li et al. [2001] survey the



most important methods, which extract different properties of indi- the video to stabilize individual frames. Frames that share a back-
vidual video frames, shots or segments, such as saliency [Teodosioground are grouped into the same mosaic. (2) Mosaic generation
and Bender 1993], visual attention [Ma et al. 2002] and motion using spatio-temporal masks, and (3) Narrative composition using
[Sawhney and Ayer 1996]. In our work, we extract metrics from the graph cut blending.

individual frames and panoramic scenes to convey desired proper-

ties of narratives as identified by studies of sequential art [Anderson 4.1 pre-processing

1961; Eisner 1985; McCloud 1994; Tufte 1990]. Unlike previous

research, which derive information theolretic descrip;ors_of in(_jivid- As a first step, we obtain frames that have been stabilized for mo-
ual frames, we use motion. By ensuring that motion is uninter- tjon \e accomplished this following the approach by Lowe et al.
rupted from scene to scene, we attain the illusion of flow, one of the [2003] for matching frames and computing image panoramas. Sim-

key properties of visual narratives. ply stitching frames at the seams does not produce a compelling
representation of the video, due to the presence of moving fore-
3 Design Principles of Dynamic Narratives ground objects. We use their approach for finding matches between

frames and stabilizing them against the common background. This

At the core of visual narratives is the fact that art and writing are Operation can be expensive and it is therefore computed a priori.
interwoven [Eisner 1985]. Hence, many principles are shared with For each frame we compute scale invariant features (SIFT) and use
writing styles. Here, we extract some of the properties that help us & translational and zoom model to find matches between consecu-
discern visual narratives from other types of compositions such as tivé frames. Two consecutives frames are matched together if the
collages and thumbnails. extracted SIFT features can be modeled as a translation and a uni-
form zoom. The outcome of this step is a setagfisteredimages,
Continuity. Continuity refers to the re-use of backgrounds to con- each having the same size as the corresponding mosaic.
vey the idea of time. ThBayeux tapestryan 1" century tapestry

detailing the Norman conquest of Epgland (Fig.2b), was created 4 »  Mosaic Generation using Spatio-Temporal Masks
to convey, not a single instance of time, but rather two stages of

a journey: a sea voyage and their landing on the coast. The seay mogaicM can be defined as the composition of a background
line remains continuous throughout the tapestry to remind us of the g 4 selected parts of individusdgisteredframesly into a sin-
continuity of time. The Age of Reptilesural (Fig. 2a) comprises  — g1a image. The individual parts should correspond, in principle,
millions of years in a single panorama to convey the idea of grad- 1, mqying foreground objects. To find these moving parts, we fol-
ual change. Notice the use of trees to naturally break the sceneqqq the approach by [Kaewtrakulpong and Bowden 2001], where
into different periods. C.O”?'C bool_<s often use panels to e_nforce_ & 3 Gaussian Mixture Model is used to tag pixels as either foreground
change and break continuity. This seems more an artistic choice o packground. A similar approach is followed by Pal and Jojic
than a necessary condition. In this paper, we focus on the creation;>0os; to extract moving objects from security video. The result is
of continuous narratives. a series of Gaussian blobs and a set of foreground masks, binary

Linear flow Schmandt notes that visual narratives seem to have images which indicate if a pixel is considered as foreground when

appear contemporary to writing [Schmandt-Besserat 2007]. This it has value 1 or background, otherwise. We construct the mosaic
explains why the flow of time often follows a conventional reading from these blobs. Our mosaics are dynamic, therefore this genera-
direction. Although videos and films often depict time as a complex tion stage is a time-dependent process.

network, and moving back and forth in time is a common narrative | et ys consider the output of the foreground estimation stage a set
device, it is not our intent to depict the chronological time withina ¢ blobsBlobs(k) for a given registered frarmig and a foreground
film, but rather the linear flow of the video. maskF. A blob j in a framek can be characterized by a spatial 2D

Indication of motion Unlike static or moving panoramas, narra- Meantkj and a spatial standard deviatiog;.

tives tell a story, which are collections of interconnected actions. The process of creating a mosaic can be defined as the application
In a video, actions can be understood as motion. For the sake of s 5 spatio-temporal mask to the imalge A spatio-temporal mask
compactness, showing every single moment of an action is not pos-is g grayscale image representing the alpha or opacity of a region in

sible. Instead, narratives use several strategies to convey motiong, image, which depends on both space and time. Here, we define
in a static manner, such as broken symmetry, stroboscopic imagesinree main masks for every framg

affine shear, blur and action lines [Cutting 2002]. Some of them,

such as broken symmetry, are inherently static, but stroboscopicBlob Mask (Gi;). This mask defines the extents around a detected
images and action lines, on the other hand, can also be very pow-blob i € Blobgk), defined as a Gaussian blur with meay) and
erful when one allows them to become dynamic. In our work, we standard deviationy;. This mask blends the parts of the frame that
apply this idea for interactive playback of video narratives. corresponds to blobs with the background.

Based on these principles, we focus on narratives as seamless dyRim Mask (Ry). This mask assumes that foreground objects tend to
namic compositions. We explore the use of natural boundaries to be centered in a frame and therefore defines the mask as a smooth
provide sharper transitions where possible and smooth blendingrim of width r. This rim mask is 0 for pixels in the edge of the
where it is not. Aesthetically, video narratives are more compact frame, 1 for pixels at a distangefrom the edge of the frame, and
and coherent than a simple layout of mosaics. smoothly interpolated in between.

. Temporal Mask (Ty). This mask specifies the temporal behavior

4 Technical Approach of the composited mosaic. A static mosaic has a constant temporal
mask of 1. In other cases, however, it is desired to make foreground

A dynamic narrative can be defined as a linear collection of mo- objects more transparent when they correspond to older frames, and

saics, blended together to ensure seamless transitions. A mosaic, imake clear the direction of motion. The user can perform interac-

turn, is a panoramic summary of a short video sequence occuringtive playback on the mosaic by interacting with the parameters of

over a common background. Therefore, the generation of a narra-this mask. Setting the mask transparent for certain frames is use-

tive can be decomposed into three parts: (1) A pre-processing of ful when only key poses need to be shown, while semi-transparent
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Figure 3: Using spatio-temporal masks to generate mosaics. (1) Frame stabilizatisures that corresponding pixels from consecutive
frames are in close proximity (2) We run a foreground estimation algorithmdapteels as foreground or background, the result is the
foreground image jFand a series of blobs per frame. We apply a temporal mask and a Gaumsisk per blob to obtain the frame mask

(4) The mosaic is then the composition of a background and the opacitylated framesr|.

masks help us simulate motion blur. Please refer to the accompa-is the composition of different regions of each frame. Instead of

nying video for examples. Details are given in Section 4.3. choosing masks corresponding to foreground objects, we choose
) . . .._._the inverse mask. Fig. 4 compares our approach for computing
Figure 3 shows the process of generating a mosalc. After stabilizing the background with the extracted background using the method in
the frames, we show the foreground malSkebtained for a number %Kaewtrakulpong and Bowden 2001] and the temporal average. On
.Of frames. These masks correspond to Gaus_S|an blobs_, shown a op, we see that the foreground extraction method is not intended to
imagesGy. Also, note the temporal mask applied to the rim mask .0, te 5 perfect background, but rather track the moving objects.
as imageR(T. In this case, therc_a is a falloff that makes older We see some artifacts towards the left part of the mosaic. The tem-
frames more transparent and highlight only the newer ones. poral average, on the other hand, is blurry. Our approach preduce

Now let p define a pixel position in the mosali¢ consisting ofN a single background without the blur, by using stabilized po_rtions
registered frames. Since the frames are registered, this pixel po-of the frames that are not considered foreground (after applying the
sition is also defined in framdg. For a time valug € [1,N], we masks). We compute the background using a back-to-front compo-

can find the resulting coldviy (p) of the mosaic as a back-to-front ~ sition scheme. For each frarhe
blending of the background and the registered images after apply-

ing the resulting spatio-temporal mask This can be expressed as Bo(p) = B(p) (4)
the recursive application of linear blending of the registered frames: Be(p) = Br(P)k(p)+ (1—B(p))Bk_1(p) (5)
Mo(p,t) = Bn(p) 1) where the background mask is:
M(p,t) = ak(p,t)lk(p) + (1 - ak(p,t)Mk-1(p,t)  (2) —_—
(0]
whereBy is the extracted background. The suffixrefers to the Bk(p) =Rk(p) [ 1— Z Gkj(p) (6)
fact that this generated background is also the product of the blend- =1

ing of theN frames in the mosaic, although with different masks.

ay is the spatio-temporal mask for a given frakpeomputed asthe  andB is an initial guess of the background, which can be the one
product of the rim and temporal masks with the overall foreground obtained from the foreground estimation method, the temporal me-
mask, defined as the sum of the Gaussian blobs in the image andjian or the temporal mean. In our case, the temporal mean gives us
the foreground image. This sum is useful as the foreground estima-acceptable results, since the blurry portions are likely to be masked
tion may not always produce a precise mask. When a foregroundby g,. Note that the background, in this case, does not depend on
object remains still for a while, some pixels are often mistaken as time. This is intended to provide a single background for the mosaic
background pixels. In this case, we ensure that most of the objectand avoid artifacts when exploring the video dynamically.

will be represented in the mosaic by adding the Gaussian mask:

Blobs(k) 4.3 Dynamic Exploration of the Mosaic
A(P,t) = ReP)T(p,t k) <Fk+ j; Gk'(p)> 3 Unlike previous attempts to produce visual summaries of videos,
spatio-temporal masks allow us to produce dynamic explorations of
The backgroundBy can be extracted in numerous ways. Assa et the mosaic. This is achieved by modifying the paramgtamich

al. [2005] use the temporal median. More sophisticated methods controls the frame currently displayed in the video, and the tempo-
have been proposed [Granados et al. 2008]. Motion segmentationral maskT. Since the mosaic is defined in termstpthe result
approaches already provide an estimate of the background, but thevaries depending on the shape of functitua For example, one
result may contain artifacts due to mis-registration. Instead, we can enable in-place playback of the video while leaving a semi-
follow a similar approach to the one above, where the background transparent trail of the previous frames as a stroboscopic image,



Figure 4: Comparison of background generation methods. Left: A
few video frames. Right, from top: (1) The output from foreground
estimation process may contain errors due to overlapping intensi-
ties, (2) The temporal average is blurry, (3) Our results.

Figure 5: Different effects can be obtained by manipulating the
temporal mask. The temporal mask indicates an opacity for each
timet. (&) A mask is used to simulate motion blur and make explicit
the difference in velocity of the two moving actors. (b) A mask to
highlight the trajectory of motion (c) Using a temporal falloff helps
us identify who moved first (the more transparent bicycle appears
earlier) (d). We can invert the falloff to change the temporal rela-
tionship. Now, the other bicycle appears to have moved first.

using a smooth falloff functiofly. We use an exponential falloff:

Tk(p,t _ k) _ ef(tfk)2/2crz (7)
where the parameter controls the falloff. In this case, the falloff
produces stroboscopic images of the frames preceding and succee
ing the frame at timé. By modifying the parameter the user can

produce a stroboscopic playback of the video. In many cases, ex-

cessive use of this effect introduces clutter and the motion is no
longer visible. Instead, one can introduce temporal filtering to sam-
ple sparse frames, as shown in Figure 5.

4.4 Alpha Matting

In our approach, we attempt to maximize the probability of seg-

No matting

Figure 6: Alpha matting can be used to improve the blending of
foreground objects. Left: no matting results in bleeding of back-
ground pixels to the other replicas. Right: matting results in crisper
foreground objects (Video courtesy of Dan B Goldman).

foreground mask is the bleeding of background pixels into other
foreground replicas when creating stroboscopic images. This is
seen in Figure 6-left. Here, the second replica of the walking person
(from left to right) is blended with the background. We can see a
greenish halo (from the grass) emanating from the first replica. This
can be alleviated when the background does not move and the stabi-
lization of the frames is accurate enough. We use an alpha matting
approach, where we compute a new mdgky solving the matting
equation for every pixgb:

Ik = di(axlk) + (1 - Gx)Bn (8)
This equation states that the new alpha mask should statisfy the
matting equation for the foreground imagely, whereay is the
one obtained using the spatio-temporal masks and the background
imageBy. The result can be seen in Figure 6-right, where individ-
ual foreground replicas can be shown at full opacity without intro-
ducing background halos.

4.5 Narrative Composition

A full narrative of a video is a composition of mosaics in a linear
manner. One can try to put all mosaics in sequence to signify the
separation of disparate scenes. However, representing this rarrativ
as such a sequence does not produce compact images. In our ap-
proach, we allow overlap to create compact and seamless transitions
between mosaics. To blend the two mosaics in the intersection re-
gion, we use a modified version of the graph-cut seams introduced
by [Boykov and Kolmogorov 2004]. This method considers the pix-
els in the overlap area as a graph, where edges are defined between
the horizonal and vertical immediate neighbors of each pixel. The
optimal seam (or minimum cut) is one that maximizes flow [Kwatra

et al. 2003], which depends on the cost of each edge.

The traditional application of graph cuts does not ensure the conti-
nuity of dynamic narratives, since an overlapping mosaic may ob-
scure an important action of the occluded mosaic. On the other
hand, performing the graph cut optimization on-the-fly may be
costly. Instead, we define a cost function that blends two mosaics
sre andMygt and adds a penalty, in terms of the motion makks
andAqg, that increases the cost in regions with motion. The mo-
tion mask image is a grayscale image that composes the aggregate
mask of all the frames in a mosaic. That is, for a given mokgic
the corresponding motion magkis computed using back-to-front
compositing as:

A1(p)
Ac(p)

al(pvl)
a(p, K) + (1 — o (P, k) Ax-1(p. K)

menting the foreground objects by considering a Gaussian blur thatfor k € [1,N], whereN is the number of frames in the mosaic. No-
covers most of the foreground pixels, but that also includes some tice how we apply the temporal parametef ay as the timek. This
background pixels. One issue with the Gaussian blur added to theis done with the intention of obtaining the highest mask for that



Figure 8: Our authoring system consists of three windows. The top
window shows the scenes detected by the stabilization process. On
the top right corner we provide the original video clip. The main
window, the narrative view, contains all the clips selected by the

. . . user. In this example, the user has selected two clips, which the
Figure 7: Motion-based graph cuts. (a) Traditional graph cut may user can explore d)?namically. P

be placed through moving characters. (b) With a motion term, we
prevent the seam from being placed along the moving characters. overlapping mosaics. This is especially necessary for disparate
As a faster alternative to gradient-domain blending, we use feath- mosaics or mosaics with slightly different backgrounds (possibly
ering around the graph cut proportional to the local gradient. (c) due to light variation). The effects of not using blending is seen
with no feathered cuts, we get visible seams, especially when thein Fig 7(c). To alleviate this, we define an exponential falloff of
lighting varies. (d) feathered graph cuts produce acceptable results g—max||IMscll,[|[BMasl1)/9* for two mosaicsMsre and Mg, Where

(c) Unfeathered graph cut

(d) Feathered graph cut

with little cost and preserves sharp edges (wall paintingsjdeo
courtesy of the White House, public domain)

02 defines the steepness of the falloff, afit¥ls,c and OMgs; are
the gradients of the source and destination mosaics at a pixel in

frame and avoiding missing important actions due to the temporal the seéam, respectively. When the gradients are high, the falloff is

falloff. One can alternatively defin& as a temporal motion mask,

small, which preserves the sharp graph cut at that point. When the

which changes as we change time. Therefore, graph cuts need to bgradients are low, the falloff is larger and the seam is replaced by a
computed for each frame. This approach, however, might produce SMooth transition. An example is shown in Fig. 7(d).

popping artifacts. The result of incorporating motion in the graph
cut blending is shown in Figure 7(a-b).

The cost function between two neighboring pixelandq is there-
fore defined as

WV (p,d, Msrc, Mgst) + (1 — @) (Asrc + Adst) ©)

for two overlapping mosaicsls,c andMyst and their respective al-
pha maskssc and Agg;, and w a weighting factor to give more
weight to the image features or the motion. Whee- 1, the result

is that of traditional graph cut blending, i.e., ignoring the motion.
The termV is formulated as in AutoCollage [Rother et al. 2006],
known to work better for disparate overlapping images:

HMsrc(p)*Mdst(p) H
&+[[Msrc(p) —Msrc(a)[]?

[[Msre(9) —Mast(a)|| )

V(p,d, Mgrc, Mgst) = min(

4.6 Interaction

Unlike hand-drawn narratives and image collages, our system pro-
vides interactive video playback and skimming. The user can play,
pause or rewind different portions of the narrative at any time. A
snapshot of the authoring system is shown in Figure 8, and consists
of three windows: the thumbnail view, which hosts all the scenes
detected by our system, the original video playback window (top
right corner) and the narrative view, which is the main canvas where
the user places the different clips. In there, we provide the follow-
ing capabilities for building an effective narrative:

Narrative Assembly. The user creates a narrative by selecting clips
from the thumbnail view and placing them on the narrative view.
Dragging one clip left or right allows the user to control the size
of the narrative. In the figure below, the two clips in Fig. 8 are
collapsed in a shorter narrative. Notice how the ticket machine on

&+[[Mast(p) —Masi(q) | ) Té
. L the left provides the transitional seam between the two scenes.
whereg is a small number to prevent division by zero. The numer-

ators on this equation corresponds to pixel differences between thePlayback. Dynamic video narratives can be played back and
two mosaics at any given point for two neighboring pixgland skimmed in real-time. We provide a playback bar (bottom) that the
g. The denominators define the image gradient in the direction of user can slide right or left to go forward or backward, respectively,
the neighbor. Therefore, this equation is minimum when either the in time. Below, the user interactively rewinds the second clip.

pixel differences are small, representing a seamless transition, or,
when the gradient is high, representing a hard edge where the cu
can be placed.

Feathered Graph Cuts. In image stitching and panorama gen-
eration, seams obtained with graph cuts are usually blended us-_|
ing gradient-domain approaches [Rother et al. 2006]. The same}
can be used in our approach. As a fast alternative, our author-

ing system uses feathered graph cuts, which also consider the graTemporal Exploration. The user can explore the temporal aspects
dient of the image to define a smooth interpolation between two of a clip to highlight an action or movement. This is obtained in




our system using the temporal mask. We enhance the playback bar
with yellow dots representing the distribution of foreground objects
used in the narrative. In the example below, the user chooses five
replicas. Each replica has a motion tail, represented as vertical line
segments. Dragging the mouse over this section allows the user to
change the distribution of replicas or the density of the tails. Here,
the user increases the density of the tail.

Temporal Ordering. Since some clips have the moving objects
that approach the camera while others go away from it, the temporal
order of frames is important. As described before, this ordering Figure 9: Limitations. (a-b): Occluding motion may not be con-
can represent different temporal aspects. In this example, the usewveyed properly using our approach (a). As an alternative, we can
switches the order to show the correct motion up the stairs. split a scene with occluding motion into separate scenes and apply
our narrative assembly mechanism to reduce the effects of occlu-
sion (b). (c-d): Moving background. Here, a palm moving in the
wind is handled by the system as a collection of individual mov-
ing blobs, resulting in a discontinuous motion. Compare to the two
moving actors, which are properly segmented.

Occluding motion. Since we do not modify the relationship be-
tween the foreground object and the background, overlapping mo-
5 Discussion and Limitations tion may not help depict an action. An example is shown in Fig-
ure 9(a). As an alternative, we can split a scene into smaller sub-
scenes, in which case our approach can exploit the narrative assem-

Our approach offers a variety of possibilities for generating effec- bly mechanism to deal with occlusion (Figure. 9(b)).

tive visual narratives with little effort. For the purposes of creating
narratives, the nature of the video bears some importance. In ourmoving background. When the moving objects cannot be clearly
case, our approach is more effective for videos that capture an ac-segmented, such as with large moving backgrounds (e.g., waves
tion in both space and time. We believe a wide range of video of the ocean) or large deformable objects (e.g., the palm leaves in
clips fall into that category, including performance capture (such Figure 9(c)), the temporal masks do not align with clearly defined
as dance), sportscasts, action sequences in movies and shots frombjects. The resulting narrative will contain blurry regions repre-
TV shows. Professional movie clips usually have clear shots of the senting the parts where the background changes.

foreground objects and are centered. Home made movies are often

shot from a single person’s perspective and may not be suitable for .

extracting narrgtivé)s. In conﬁrastp, animated sho)r,ts often have static6 Conclusions and Future Work

back ds and col iformity is th . .
ackgrounds and color untormity s the norm We have successfully addressed several key challenges in produc-

Examples of narratives created using our approach are shown ining compact and dynamic narratives from video clips. Narratives
Figures 10-12. Figure 10 illustrates the use of narrative to show created with our approach follow certain key design principles.
directions in a video clip that follows a person from one place to Coherence is ensured by stitching the background into a single
another. Figure 11 shows the ability to tell a story from a cartoon panorama. We use motion estimation algorithms to recover the
short, and the use of temporal effects to highlight speed and motion.camera motion from a video clip and foreground estimation to ex-
Figure 12 shows the capabilities of video narratives to summarize tract foreground pixels. We decompose the generation of narratives
general footage, in this case an equestrian show. Our system is moras the blending of foreground and background regions in a way
effective for video shots where the motion has a clear directionality that depicts the flow of time. We have shown how to create a se-
in the 2D plane (panning and zooming) and the foreground objects ries of spatio-temporal masks that can be used to extract a crisp
are clearly visible. There are certain cases where our approach hadackground without the blurriness of temporal averages and to also
limited use when composing a narrative: indicate the foreground regions that are extracted from individual
frames. Through interactive manipulation of these masks, we have
successfully created a playable and interactive mosaic that also lets
users explore temporal effects. This enables interactivity and dy-
namism and overcomes the limited communicative value of static
counterparts. We ensure compactness by allowing mosaics to be

. ! J | blended together in a seamless manner. We use a novel variation
mains an issue, and our approach is limited by the accuracy of the ¢ 1he graph cut algorithm for building seams, which now uses the
foreground estimation process under such conditions. Other com- ., Ji:0 " masks to prevent cuts along moving objects

plicated cases are those with fast moving sequences where consec-
utive frames cannot be stitched together in a single mosaic. In suchln the spirit of usability, our system makes a lot of automatic
cases, our approach is left with a collection of disparate frames of choices about the foreground and background. Our spatio-tempora
low compactness, and the resulting narratives appear more like amasks are constructed to alleviate the artifacts that may appear
collage, similar to those in [Yang et al. 2008]. Other limitations are when a static background cannot be retrieved accurately or moving
more unique to our approach: objects cannot be segmented with precision. With manual inter-

Motion parallax and fast camera motion. Since we rely on frame
stabilization, our system is subject to the limitations of current sta-
bilization algorithms. At this stage, we handle panning and zoom-
ing camera motions, and our work can be extended to other more
complex camera motions, including rotation. Motion parallax re-



Figure 10: Video narrative of a sequence (7 minutes) depicting directions from argahét to a particular office room. Our approach is
able to compress the video and exploit hard edges, such as the par&ofgna and door frames, to provide seamless transitions.

vention, such as specifying regions as either foreground and back-BARNES, C., GOLDMAN, D. B., SHECHTMAN, E.,AND FINKEL-

ground, our results can naturally be improved to obtain even more
visually pleasing images. Although the generation of narratives that

STEIN, A. 2010. Video tapestries with continuous temporal
zoom.ACM Transactions on Graphics 29.

tell a story remains a craft, our system gets us closer to automaticgg e, E. P.,AND MCMILLAN , L. 2007. Computational time-

video summarization and provides a test-bed to conduct studies
about the expressive power of visual narratives and the principles

of sequential art.
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