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ABSTRACT 
Recent proliferation of computing devices has brought attention to 
heterogeneous collaborative systems, where key challenges arise 
from the resource limitations and disparities. Sharing data across 
disparate devices makes it necessary to employ mechanisms for 
adapting the original data and presenting it to the user in the best 
possible way. However, this could represent a major problem for 
effective collaboration, since users may find it difficult to reach 
consensus with everyone working with individually tailored data. 
This paper presents a novel approach to controlling the coupling 
of heterogeneous collaborative systems by combining concepts 
from complex systems and data adaptation techniques. The key 
idea is that data must be adapted to each individual’s preferences 
and resource capabilities. To support and promote collaboration 
this adaptation must be interdependent, and adaptation performed 
by one individual should influence the adaptation of the others. 
These influences are defined according to the user’s roles and 
collaboration requirements. We model the problem as a 
distributed optimization problem, so that the most useful data—
both for the individual and the group as a whole—is scheduled for 
each user, while satisfying their preferences, their resource 
limitations, and their mutual influences. We show how this 
approach can be applied in a collaborative 3D design application 
and how it can be extended to other applications. 

Categories and Subject Descriptors 
H.5.3 [Information Interfaces and Presentation]: Group and 
Organization Interfaces; H.2.5 [Database Management]: 
Heterogeneous Databases—Data translation; D.2.11 [Software 
Engineering]: Software Architectures 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
Coupling, 3D content adaptation, heterogeneous systems, CSCW 

1. INTRODUCTION 
With the increasing popularity of data networks and mobile 
devices, there has been a demand for technologies that support 
collaboration of geographically separated knowledge workers. 
Here we address a major bottleneck to the rapid growth of 
collaborative applications—that of heterogeneous computing 
platforms with unequal computing and communication resources. 

When users collaborate via dissimilar devices, system resources 
are often constrained, so it may not be possible to transmit, store, 
and visualize a dataset in an unaltered form. For this reason, 
applications need to adapt the data to match the available 
resources by supporting different grades of representation or 
fidelity, or different modalities of representation. This is a critical 
requirement: the variety of device capabilities requires a 
corresponding variety of representational types and fidelities, each 
having different resource demands. For instance, it is common in 
graphical applications to obtain different representations through 
different rendering techniques, (such as wireframe, illustrative, 
and photorealistic [11]), through simplification, or through 
filtering. An example is shown in Figure 1. Similarly, 
collaborative applications with audio and video can be adapted 
through different media encoders, compression levels and bit 
rates. This creates an economy of representations, within which 
the system can make choices among alternatives and allocate 
resources to achieve the individual and group objectives. 

A key issue raised by such adaptive applications is whether the 
resulting heterogeneity allows meaningful collaboration. In some 
applications, such as navigation of a shared 3D world, this may 
not be a problem since there is no critical decision making 
involved and the main goal is to enable participation with 
resource-limited devices. However, for other kinds of 
applications, e.g., in product design, it may be necessary to 
provide similar or identical views for some or all participants, 
since reaching a consensus or assuming accountability for the 
decisions may critically depend on having as similar a 
representation across the participants as possible. This 
preservation of similarity is commonly known as coupling. 

This paper presents an approach for enabling coupling in 
collaborative systems through optimization. This optimization 
seeks to satisfy both the users’ preferences and system 
capabilities, and the collaborative constraints. In other words, the 
system is able to strike an optimum balance between selfishness 
and sympathy of the group members. To achieve this, we model 
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collaborative groups as a network of adaptation processes, which 
are responsible for solving the optimization problem. The group 
requirements for effective collaboration are modeled as influence 
links, which define the way the data adaptation of a given 
participant limits the options of data adaptation for the others. 
This distributed optimization is a hard problem since it is a 
variation of the well-known knapsack problem, which is NP-
complete [27], and, in general it may not be possible to solve 
optimally in a strictly decentralized setting.  

Our approach offers a model and framework that can be applied 
towards developing tools for collaborative design, development 
and visualization by open source communities and industry. In 
this paper we present a particular application of our model to 
collaborative 3D design, and we show how these ideas can be 
extended to other types of applications. 

The rest of the paper is organized as follows: Section 2 describes 
previous work related to our model. The optimization framework 
and the ideas of influence links are described in Section 3. Section 
4 presents some application scenarios. Section 5 shows an 
evaluation of our model to validate the model as an effective 
mechanism for handling coupling in heterogeneous collaborative 
systems. Finally, we present conclusions of our work. 

2. RELATED WORK 
Our approach is related to three main research fields: (1) data 
adaptation, (2) multi-resolution representations, and (3) data and 
view coupling, all in the context of heterogeneous collaboration. 

Data adaptation can be applied at different levels of abstraction, 
but usually requires knowledge of the application semantics in 
order to be more effective, such as in systems like Odyssey [29] or 
in [13]. The core of these solutions lies in adaptively compressing 
data so that the storage, transmission, and visualization costs are 
reduced, without a significant impact on its utility to the user. The 
range of applications where data adaptation has been exploited is 
wide: from transcoding the Web content [3][12][24], through text 
summarization [25][26], to image and video compression [28] 
and adaptive 3D applications [14]. There has been a recent effort 
to support collaboration over mobile devices through data 
adaptation [7][31]. Ref. [7] works with multi-representations, but 
concerns itself mostly with consistency issues due to concurrent 
updates. Ref. [31] uses optimization to allocate resources so to 
maximize the individual user benefit, but ignores the group 
interests. 

The role of data adaptation in networked virtual environments has 
been limited so far to the ability to transmit and store large 3D 
datasets on a variety of platforms [6][18]. However, the 
challenges of interactive collaboration in the presence of 
heterogeneous 3D representations have not been explored in 
depth. A recent approach by Cera et al. [4], addresses the problem 
of collaboration over CAD models among users with different 
roles and security constraints for data access. They use multi-
resolution models to provide transparent data adaptation to the 
users according to their respective access privileges. 

The use of multiple representations in collaborative systems 
imposes additional challenges in providing similar views and/or 
representations of the shared data for the different users. Correa 
and Marsic [5], and Li and Rui [23], address the problem when 
interoperating heterogeneous systems, particularly shared editors. 

 
Coupling has been the focus of multiple research approaches in 
the literature, e.g., DistEdit [22], Corona [16], Jasmine [33]. The 
tradeoff between group and individual satisfaction has also been 
studied in [8][15], from the perspective of user interface and 
group awareness but they do not consider data adaptation to 
system resources. In this paper, we address the problem of group 
coupling at the level of data representation, and the techniques 
and widgets at the user level can be incorporated on top of our 
approach. Our prior work [5] presents a framework to interoperate 
heterogeneous collaborative systems, based on the adaptation of 
the underlying data structure of the shared dataset. The data 
structure, represented as a graph, included both the structural and 
semantic relationships between the different shared elements. 
However, this framework only supports individual adaptation of 
the data and does not provide a mechanism for ensuring coupling 
among the different users. In this paper, we enable users to specify 
their preference towards individual vs. group satisfaction of 
collaborative policies.  Our model optimizes the data adaptation to 
provide the users the best possible representation of the shared 
dataset while satisfying their group preferences, which can be set 
up with a small number of parameters. In the next section, we 
describe the optimization framework for heterogeneous 
collaborative systems. 

(c) 

(a) (b) 

(d) 

(e) (f)  
Figure 1. Multiple representations in 3D design applications 
(a) and (b) are obtained by simplification, while (c)-(e) use 

different rendering styles: (c) shaded (d) wireframe (e) 
photorealistic (f) illustrative. 
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3. OPTIMIZATION FRAMEWORK 
A collaborative session is a group of users interacting with a set of 
tools over a shared dataset.  Users may have different 
representation of the data, due to limitations in resources, such as 
computing cycles or network bandwidth, or due to the user’s 
preferences.  To allow adaptation, we assume that the dataset can 
be represented in multiple forms. 

3.1 Multi-representation of Shared Data 
Multi-representation of shared data makes possible collaborative 
work from a variety of devices. Applications can be extended to 
support multi-representation data by adding an extra dimension to 
their elements. According to this paradigm, each element or object 
j in a shared environment can have up to L distinct 
representations. Each of these representations has an increasing 
cost r, and a benefit b. The cost can be defined as CPU, memory 
or bandwidth requirements. For instance, in 3D environments, the 
number of polygons used to represent an object is a good cost 
metric, since it represents both the memory requirements, as its 
rendering cost. Benefit metrics represent the quality of a given 
representation for the user. Although this may seem subjective, 
quantitative measures, such as image similarity, are proven to be 
good metrics of benefit [14]. 

Examples of multiple representations for 3D environments can be 
obtained from simplification, different rendering styles, or from 
model abstraction, as depicted in Fig. 1. The corresponding 
resource requirements and rendering speeds are shown in Table 1. 
For images and video, multiple representations can be obtained 
using different compression levels, resolutions, or color palettes. 

Table 1. Multi-representation characteristics for Figure 1. 

Represent. Triangles Rendering Speed 
Fig. 1(a) 3674 Flat shading + Wireframe High 
Fig. 1(b) 12546 Flat shading + Wireframe High 
Fig. 1(c) 16624 Flat shading + Wireframe High 
Fig. 1(d) 16624 Wireframe Higher 
Fig. 1(e) 16624 Phong shading + Shadows Low 
Fig. 1(f) 16624 Illustrative rendering Medium

3.2 Individual/Local Optimization 
The first step of our optimization framework is to ensure that 
individuals have the best representation of the shared data that 
satisfies the resource constraints and their preferences. For this 
purpose, we assume that each participant i has assigned the value 
of benefit automatically as in [14], bi,j,k, and cost, ri,j,k, to each 
representation k of every object j in the shared environment. 

We solve the problem of local resource scheduling as an 
optimization problem, similar to the well-known Knapsack 
Problem [27]. Its solution is a set of binary values that tell us 
whether or not a given representation k of an object j is selected 
for a given user. 

More formally, let us define a set of N users sharing M objects 
each of which has L representations of different fidelities. We also 
define a limit of resources Ri available on the device of user i. Let 
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The objective function we need to maximize is given by (1), 
which is the overall sum of benefits. It is subject to the resource 
limitations of each user’s computing device, (2), and the unique 
representation constraint, (3), which says that there must be 
exactly one representation selected per object. Note that solving 
this problem for all users is the same as solving it for each one 
independently. Thus, this is referred to as local optimization. 

Local optimization is an effective way to provide the users with 
the best representation of the shared data that satisfies their 
constraints. This type of optimization has been used widely in 
works such as [31]. However, this method is not sufficient for 
effective collaboration, since it ignores the group interests and 
focuses only on individuals. 

3.3 Coupling/Influence Links 
We define coupling as the degree of similarity between the dataset 
representations for different users in a collaboration group. 
Complete coupling is achieved when the different users have the 
same representations for all the shared elements, while no 
coupling is achieved when the representations of different users 
are independent. Notice that this definition does not concern their 
viewpoints but only the fidelity of their representations. We will 
discuss viewpoint coupling in Section 4.1.1 below. 

Furthermore, coupling can be specified differently for users with 
different roles. This coupling is directly related to the influence of 
one user upon another. To understand this concept of influence, 
let us consider the scenario depicted in Figure 2: Five users share 
the same 3D object using a variety of platforms. User B has a role 
of coordinator and oversees the work of three peers C, D and E. 
These peers share the same interests and responsibilities for the 
task, so it is expected that they would have identical or similar 
representations, but since their computing capabilities may not be 
the same, they may have some differences. Thus, there is a strong 
coupling among them. As depicted in Figure 2 (bottom row), 

A B

C 

D E

A B C D E  
Figure 2. Five users sharing a 3D model and their respective 
views. Arrows indicate capability to influence another user’s 
view. The arrow’s thickness indicates the influence strength. 
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these three peers have an illustrative rendering type of 
representation, composed of simplified versions of the objects 
seen by user B. Similarly, users A and B have a strong coupling, 
and their display views are almost identical. We can say that users 
A and B have a strong symmetric influence over each other, and 
ditto for users C, D and E. Conversely, user B has a medium 
influence on C, D, E and it is asymmetric so B is not hampered by 
the lack of resources available to C, D, and E. Similarly A has a 
weak (and asymmetric) indirect influence on C, D, and E 
(indicated by the dashed arrow). From this scenario, we identify 
two types of mechanisms by which one user influences another: 

• Peer influence links: These links are symmetric, and they are 
used between individuals with the same role. Here, each 
individual will strive to have the same representation for the 
same object. Thus, each individual’s optimal scheduler 
influences the other peers to make similar, or even identical, 
decisions about the scheduling. In other words, the difference 
between the object representations across the group tends to 
be minimal. 

• Coordinator influence links: These are always asymmetric 
links, where one user plays a more important role than the 
other. We say that they are related through a coordinator-
coordinated relationship. In such a case, it is safe to say that 
the selection of a representation on the coordinator’s site 
influences the coordinated user to be similar or identical, but 
selecting a representation in the coordinated user does not 
necessarily influence the coordinator. 

This distinction of influence links is used in this paper to refer to 
symmetric and asymmetric influences. It is important to 
distinguish this division from user roles. Roles in collaboration 
are not restricted to peer or coordinator-worker, but include other 
types such as information recorder, observer, moderator, among 
others. We believe that the different types of roles imply different 
degrees of influence among users. For instance, a user with a role 
of information recorder has little, if any, influence onto the 
others, while his (her) actions are influenced by all users. 

Note that in a real collaboration scenario these influences may be 
formed dynamically, rather than being defined a priori. For 
instance, one user may be the coordinator of a subgroup of two 
peers. It is sensible to think that a coordinator influence link is 
formed when the coordinator is overseeing the work of the others. 
However, when this user needs to reach a consensus with the 
coordinated two, this requires common grounding and it is 
important to have similar representations, even if that 
compromises the local utility of some individual. In such case, the 
peer links are formed among all three users. 

We emphasize that these influences are not generally in force for 
the entire collaborative session. Rather, they come into effect only 
at critical junctures, when joint decisions are being made. 

3.4 Group/Global Optimization 
As noted by Klein et al. [21], the optimal state of a complex 
system can be obtained by maximizing the degree of satisfaction 
of the influences between their elements. In our case, the optimal 
state refers to the particular representations of shared data selected 
for each user at a given time. The influence satisfaction can be 
introduced into the optimization in two ways: influences as a 

constraint, or influences as part of the objective function, as 
described below. 

3.4.1 Influences as a Constraint 
In this case, a new constraint is added to the problem. Let ℑ  
denote the subset of all hosts in a collaborative configuration that 
are connected by influence links. Following the notation defined 
in Eqs. (1)–(3), let a parameter ],0[

21, Lii ∈δ  denote the tolerable 

difference between the object representations of users i1, i2 ∈  ℑ . If 
i1 and i2 exert no mutual influence, then Lii =

21,δ . If there is a 

coordinator influence link from a coordinator i1 to a coordinated 
user i2, then Lii <

21,δ . If there is a peer influence link between i1 

and i2, then Liiii <=
1221 ,, δδ . The greatest influence is when 

0
21, =iiδ , where both users must have identical views. 

The δ parameters can be specified by the group, the application 
developer, or some coordination entity, and can be changed 
dynamically. We assume that the different representations, 
indexed by subscript k, are ordered in ascending degree of fidelity. 
Then, the constraint 

(a) 

(b) 

(c) 

δδδδ = 1 

δδδδ = 0 

δδδδ = 0 

 
Figure 3. Global optimization with delta satisfaction (a) δδδδ = 0; 
(b) δδδδ = 1; (c) relaxation of the completeness requirement, δδδδ = 0. 
The user seeing the left view has lesser resources. The views in 
(c) are exactly the same. Text labels indicate omitted elements. 
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says that for all pairs of hosts i1 and i2 that exert mutual influence, 
the fidelity-wise difference of representations for user i1 cannot 
exceed that of user i2 by more than 

21,iiδ . We refer to the problem 

stated by Eqs. (1)–(4) as global optimization with delta 
satisfaction. Note that the absence of absolute value in Eq. (4) 
represents an asymmetric influence. For a symmetric influence, 
we would have two constraints of the type of Eq. (4), with 
switched indices 

21,iiδ  and 
12 ,iiδ , which is equivalent to a single 

constraint with the absolute value in the summation in Eq. (4). 

Notice also that δ is inversely related to the strength of the 
coupling link. For instance, when δ = 0, representations for users 
i1 and i2 are identical, i.e., the coupling is maximal. When δ = 1, 
the difference between representations must not exceed 1. When δ 
= L, i.e., the maximum number of different representations per 
object, this constraint is always satisfied, so the global utility is 
just the sum of local utilities, i.e., the coupling is minimal. 

Figure 3 shows an example of this mechanism. Three different 
stages of a collaborative session are shown. Each row shows the 
view from two different users with different resource limitations. 
The images on the left correspond to user1 with approximately a 
third of resources available to user2 who sees the images on the 
right. For illustration purposes only, it is assumed that the users 
share the viewpoint. In an actual collaborative session, it may be 
beneficial for users to have independent viewpoints that may 
occasionally be coupled on demand for common grounding. The 
transparent spheres in the images correspond to the region of 
interest (focus of attention) of each user. For instance, user1 is 
interested in the back wheel of the motorcycle, while user2 is 
interested in the front one. Figures 3(a) and 3(b) illustrate the 
results of delta satisfaction. In this case, we see that setting δ = 0 
results in the highest coupling possible, since the constraint forces 
the data adaptation system to provide identical views for both 
users. However, we see that this penalizes user2 by choosing low 
fidelity for some elements although resources are left unused (see, 
e.g., the back wheel). A way to avoid this is to increase the 
constraint to δ = 1. In this case, each user gets a high fidelity 
element in their own region of interest (user1 gets to see the back 
wheel in high detail), but the coupling is low. This constitutes the 
main disadvantage of delta satisfaction. A small change in the 
coupling parameters, i.e., delta, results in drastic view changes for 
both users. In a collaborative application, this is distracting and 
results in very low resource efficiency. 

This mechanism implies that coupling requirements are hard 
constraints that must be satisfied. For some applications, this may 
be too rigid to provide access for users with limited resources. For 
this reason, it may be more appropriate to introduce influences as 
soft constrains, as described below. 

3.4.2 Constraint Relaxation 
A mechanism for remedying the brittleness of the influence 
constraints is to relax some of the other optimization constraints. 

So far, we have required from the optimization approach to 
provide complete, one-to-one versions of the shared dataset. This 
is expressed by Eq. (3), which enforces exactly one representation 
per object. We can relax this constraint to open up the 
possibilities for data adaptation when we introduce influences as 
constraint, Eq. (4). 

Instead of exactly one representation, we modify the constraint to 
allow at most one representation per object, as shown in Eq. (3b). 

MjNix
L

k
kji ≤≤≤≤≤∑

=

1,11
1

,,
  (3b) 

 

(a) 

(b) 

(c) 

LS = 5 

LS = 3 

LS = 0 

 
Figure 4. Global optimization delta minimization for (a) Link 

strength = 0 (low coupling); (b) Link strength = 3 (medium 
coupling); (c) Link strength = 5 (higher coupling). The user 

seeing the left view has lesser resources. Going from (a) 
through (b) to (c), the fidelity of the left view is relocated from 
the handles to the front wheel (focus of attention of the right 
user), while the fidelity of the right user decreases, starting 

with the handles which are of no interest to either user.  
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This constraint allows the data adaptation process to omit 
elements of low importance and use their resources to select 
higher fidelity versions of more important elements. Figure 3(c) 
shows an example of this relaxation for 0

21, =iiδ , i.e., the highest 

possible coupling. As seen, the result is a more detailed 
representation of the most important objects (those that are 
attended by either user), while unimportant (unattended) elements 
are omitted. We show text labels for the omitted objects (centered 
on the omitted object’s center of mass). The text labels provide 
context and introduce no significant rendering cost.  As it can be 
seen, both users get a better representation and still high coupling 
is enforced. Compared with Figure 3(a), the overall detail is 
higher for both users. 

3.4.3 Influences as Part of the Objective Function 
In contrast to constraint satisfaction, one may want to obtain a 
solution that balances the benefit of each individual with the 
benefit of the group. Based on the definitions of influence links, 
maximizing the benefit of the group can be defined as minimizing 
the differences between the users’ representations. This can be 
thought of as a soft constraint on the coupling parameters, unlike 
the above approach, which enforces hard constraints. Constraint 
(4) must always be satisfied, whereas embedding influences in the 
objective function does not guarantee constraint satisfaction—
hence its “soft” nature. 

In the optimization model, we can account for the dissimilarity of 
users’ representations as a penalty function to the sum of local 
utility (benefits). This penalty function can be incorporated in the 
optimization problem as a sum that is subtracted from the overall 
benefit. This way, the higher the differences between the 
representations, the lower the benefit is. The modified objective 
function becomes either Eq. (5) or (6). In (5) the penalty function 
is defined as the sum of absolute differences (SAD) between the 
fidelities of all objects, weighted by the sum of their benefits. 
Conversely, in (6) the penalty function is defined as the sum of 
squared differences (SSD). Note that in (6), benefit values in the 
first term of the sum are squared in order to maintain the same 
scale as in the second term. 

We introduce two weighting parameters w0 and w1 to allow the 
application and users to control the relative importance of the 
preferences of the group vs. the preferences of the individuals. 
Weight w0 is assigned individually to all users i, and w1 is 
assigned only to the pairs of users i1 and i2 that exert mutual 
influence. When w0>w1, more importance is given to preferences 
of the individuals, whereas when w0<w1, more importance is given 
to the preferences of the group. Therefore, the ratio w1/w0 can be 
used to measure the strength of the influence links. 

We call the problems defined by the equations (5), (2), and (3), or 
(6), (2), and (3) as global optimization with delta minimization. 

The penalization function is applied to pairs of clients. This 
means that w1 does not need to be identical across all the pairs of 

clients, which enables us to accommodate the different types of 
influence links defined above. Further, the manipulation of the 
optimization parameters enables the incorporation of 
collaboration aspects, including user autonomy, shared views 
(e.g., by setting the weight values to enforce homogeneous 
representation fidelity), different access rights (by setting different 
weights for each user) and global vs. local views (also known as 
detail vs. context tradeoff [32], obtained by manipulating the 
benefit values of the different objects). 

Figure 4 illustrates the results for delta optimization with different 
link strengths, on the same scenario as in Figure 3. Link strength, 
LS, is determined as the ratio between the weight used for delta 
minimization and the weight for benefit maximization. 

0

1
, 21 w

w
LS ii =             (7) 

Figure 4(a) shows the view for the two users for a link strength LS 
= 0, i.e., no coupling. Figure 4(b) and Figure 4(c) show their 
views for LS = 3 and LS = 5, respectively. It can be seen that this 
results in better balance of resources and preference than for 
influence satisfaction. Further, by changing the parameters, i.e., 
LS, users can smoothly explore the shared dataset from no-
coupling to high-coupling settings. This is further described 
below in the evaluation section, where we quantify coupling and 
resources as the link strength parameter is varied. 

3.5 Collaborative Policies 
The group policies include the choices about optimization 
strategies and particular coupling characteristics. For example, 
one choice is between global optimization with delta satisfaction 
vs. with delta minimization. In the former case, the tunable 
parameters are 

21,iiδ  where i1, i2 ∈  ℑ , i1 ≠ i2, are any pair of users 

that exert mutual influence. In the latter case, the tunable 
parameters are the link strengths, 

21,iiLS  in Eq. (7), between the 

different users. Currently the influence links are defined only 
pairwise for a set of individual hosts. A possible topic for future 
research is to extend this to hierarchical influences, such as 
coordinator-to-group or group-to-group. 

4. ENVISIONED APPLICATION  
SCENARIOS 
Some application scenarios of our approach are as follows. 

4.1 Collaborative Editing 
The main application we intend this work for is collaborative 3D 
editing, but the ideas presented here can be extended to other 
applications, such as collaborative multimedia authoring tools, 
collaborative design, and mobile video games. The main 
requirement for applying our approach is to have a mechanism to 
generate multiple representations of individual elements of a 
structured dataset. In some cases, this is already provided by the 
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application, as it is common in many multimedia authoring tools. 
This usually is provided through different compression level, 
resolution, or sampling frequency of the media. For other cases, 
many applications provide an API that can be extended to enable 
multi-representation data and adaptation. 

The users will typically not create the 3D models manually; 
rather, these will be retrieved over the network and imported into 
the collaborative application. The models could be CAD models 
obtained from a database, volumetric models obtained from a 
collection of images, or 3D images reconstructed from real-time 
sensors. Prior to retrieving the models, the collaborative 
application must run the optimization algorithm presented above, 
to determine the optimal representation selections xi,j,k to best fit 
the individual resources while complying with the group policies. 
Since the models could be retrieved from several different 
sources, it would not be feasible to run the centralized 
optimization algorithm at a model source; hence, developing a 
distributed optimization algorithm is part of future work. 

The collaboration process would mostly consist of selecting the 
3D models suited for the task at hand, retrieving them, and 
assembling into a final composition which solves the problem. As 
users join the collaborative session, influence links are formed 
according to their roles, their tasks and their immediate goals. For 
example, two CAD designers might join with a symmetric 
influence link so to have similar views. An observer can join with 
little or no influence over these two, but strongly influenced by 
what they do. As a result, the features important for the two 
designers will be well represented for the observer. A coordinator 
might also join intermittently to express important concerns and 
provide assistance. In this case, the coordinator forms an influence 
link of variable strength, which is set high when the coordinator 
actively participates and low when s/he passively observes. 

4.1.1 Viewpoint Coupling 
An important aspect of collaborative work is the management of 
the users’ views. In 3D environments, it is common to represent 
the user viewpoint in the same data structure of the shared objects, 
e.g., as in VRML [35]. If we apply optimization to the viewpoint 
elements, it is possible to obtain some kind of view coupling in 
collaborative 3D. This idea has been exploited before in 2D 
shared editors and whiteboards, as in [8][15] and [30]. Tight view 
coupling is also known as WYSIWIS (What You See Is What I 
See), and has been a widely used paradigm in collaboration [34]. 
It has, however, been rarely employed in 3D environments. A 
notable exception is the work in [36], where different levels of 
view coupling are obtained via constrained navigation. 

In our approach, viewpoint coupling refers to the distance 
between the viewing points of the different users. When two 
viewpoints are tightly coupled, the users are seeing exactly the 
same scene from the same perspective. When one user changes 
the viewpoint, that of the other user is changed in sync. In 
contrast, uncoupled viewpoints mean that the users can see a 
different view of the scene and the changes in one’s do not effect 
changes in the other’s. Between these two extremes, we can define 
a spectrum of coupling levels, based on the link strength, defined 
above. The higher the strength, the nearer their viewpoints are. 

We can implement this model by virtual springs attached to the 
observer’s location and the center of his/her region of interest. 
Similarly to the optimization above, these springs can be 

incorporated as hard or soft constraints. Since there are no 
multiple representations of viewpoint “objects,” instead of 
satisfying constraints or minimizing the difference of the 
representations, we satisfy or minimize the spatial distance 
between the viewpoint locations. If this process is repeated 
whenever a user changes the viewpoint, they behave as if they 
were connected by virtual springs.  

4.2 Shared Augmented and Mixed Reality 
AR and MR applications [1][9][10] are becoming popular with 
the availability of commoditized 3D graphics hardware. 

In these applications, the goal is to augment the view of the real 
world, usually obtained from a camera worn by the user, by 
overlaying digital information that may be too cumbersome to 
provide by other means. For instance, names of buildings may be 
attached to the view of a complex urban area, thus providing the 
means to locate a place of interest. For this reason, AR interfaces 
suffer from an important tradeoff between augmentation and 
occlusion, as identified in [17][20]. Overlaying too many virtual 
objects onto the real world input results in cluttering the view and 
occluding important objects, and becomes counter-productive. 
Conversely, overcautious avoidance of object occlusion might 
diminish the potential value of augmentation. For this reason, 
multiple representations are needed in augmented reality. Choices 
for representations are: wireframe, transparent, or solid objects, 
which have an increasing occlusion cost when overlaid over the 
actual objects, or arrows and textual labels, which have the benefit 
of providing useful information to the user without occluding 
large parts of the actual objects. 

The above framework enables the creation of adaptive AR user 
interfaces that select appropriate representation for each object 
that is being augmented, so to balance the occlusion cost vs. the 
user benefit in the context of the task. For example, objects which 
are closer to the user and are vital to the task could be augmented 
using a transparent 3D model. Other less important objects could 
be represented using wireframe rendering, while all other objects 
could be augmented using labels, so as to provide peripheral 
awareness to the user. This adaptation also accounts for 
collaborative users, whether collocated or geographically 
dispersed. Users not only have the benefit of multiple 
representations to better perform their task, but also the benefit of 
sharing the views with others, and the possibility to gather more 
information about the real environment through collaboration. 

5. IMPLEMENTATION ISSUES 

5.1 Accuracy of Cost and Benefit Models 
The first challenge is the acquisition of the cost ri,j,k and benefit 
bi,j,k parameters of the shared objects. Ideally, one would attempt 
to obtain accurate values of costs and benefits to best employ the 
framework. The underlying assumption is that the benefit in 
mathematical sense is equivalent to the user satisfaction (the 
perceived benefit). Some benefit and cost metrics can be defined a 
priori. In the context of 3D collaboration these include: polygon 
count and static memory requirements for the costs, and similarity 
metric (obtained from the mesh simplification algorithm) and 
visual size for the benefits [14]. Dynamic metrics, such as 
rendering cost (associated with window size in 3D editors), CPU 
cycles, pixel resolution and user’s viewpoint, which must be 
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monitored in real-time, are difficult to obtain. This generally 
requires a monitoring module that continuously feeds the 
optimization algorithm. 

An alternative is to work with approximate information and let the 
user(s) explore the framework until they find a workable solution. 
The search space spanned by the optimization problem can be 
explored by users manipulating the benefit and cost metrics and 
observing the impact of their choices. We know that the 
approximate values are within some distance from the actual 
values. The optimum solution found by the framework given the 
approximate cost/benefit model will be in the vicinity of the true 
optimum. Hence, it is meaningful to experiment and find a 
workable approximate model, without ever needing the accurate 
cost/benefit model. For this, a set of user interface widgets must 
be provided to quickly assign benefit/cost metrics automatically, 
and to asses the utility of those metrics. Since the framework is 
well-behaving, this exploration will eventually lead to the models 
that give acceptably optimal solutions from the user’s perspective. 

5.2 Maintaining the Influence Links 
Another implementation aspect is the maintenance of the 
influence links. As mentioned above, influence links cannot 
always be derived a priori. This is because users’ roles change 
during a collaborative session, and because users might join and 
leave frequently. An option is to implement a user awareness 
module that interacts with our framework. The application 
developer defines the rules to derive the influence links from the 
user awareness information. An example is the definition of roles 
through tables or XML files [2]. A set of rules can be defined to 
map roles into influence links. These rules derive the influence 
type (symmetric vs. asymmetric) and the strength. 

5.3 Performance Issues 
An important issue is the performance of the optimization 
algorithm. In the experiments described below, we used general 
purpose, commercial optimization software CPLEX by ILOG 
(http://www.ilog.com/products/cplex). General purpose solutions are 
usually based on well known algorithms such as branch-and-
bound [19]. They are usually computationally expensive, and 
sometimes cannot be bounded in time for obtaining a provably 
optimal solution. Generic purpose solvers work for a wide number 
of constraints and objective functions but may not be fast enough 
for real-time optimization. For the kinds of applications that 
require real-time adaptation, it is better to implement specialized 
algorithms, such as those described in [27]. As pointed above, in a 
collaborative setting, it is also necessary to use distributed solvers, 
such as the optimization algorithms described in [37], rather than 
a centralized approach. 

6. EVALUATION 
Our main goal in the evaluation is to determine how effective the 
above model is in controlling the tradeoff between individual and 
group satisfaction. In particular, we want to know for different 
objective functions how well they behave when varying the 
control parameters. We prefer the objective functions that are: 

• Smooth, such that small changes in control parameters do not 
result in dramatic changes in the resulting representation; 

• Monotonically increasing, because it is intuitive that 
individual benefit should increase as the group constraints 
are lifted, i.e., the coupling is reduced, and vice versa. 

These features are desirable even without knowing how useful 
those objective functions are in real applications. 

We implemented a testbed application that enables us to simulate 
the interactions among different users sharing a 3D model. Each 
3D model is composed of many small parts, each having several 
representations, generated beforehand using a simplification 
algorithm, e.g., [18]. The collaborative configuration comprised 
two users—user1 and user2—with user2 having available three 
times as much resources as user1. We can think of user1 as 
collaborating from a mobile device, while user2 collaborates from 
a desktop computer. We used a number of 3D objects, 
downloaded freely from the Internet, and tested the different 
coupling levels between the users having dissimilar preferences. 
Figure 5 shows two of the datasets used in the experiment, the 
gun turret (dataset 1) and the motorcycle (dataset 2). The coupling 
preferences were specified as spheres surrounding interesting 
(parts of) objects, as shown in Figures 3 and 4. We chose their 
regions of interest so to avoid a significant overlap. Otherwise the 
coupling can be determined trivially on the shared region of 
interest, but this fails to account for the general case of dissimilar 
preferences. 

We wanted to compare the results of applying optimization using 
both SAD and SSD methods described above, for different 
coupling settings. This coupling is specified as link strength, 
computed using Eq. (7). For each coupling setting we plot the two 
terms of the objective functions in Eqs. (5) and (6): the first term 
represents the local utility and the second term represents the 
dissimilarity of the representations. The local utility plot shows 
how the benefit improves for the individuals, while the 
dissimilarity plot shows how the representations for the two users 
diverge from one another. 

Figure 6 shows the results for dataset 1. Figure 6 (a) shows the 
local utility and dissimilarity plots for SAD, while Figure 7(b) 
shows those plots for SSD. Notice the logarithmic scale for the 
weight ratio (1/LS). As this ratio goes to zero, maximum coupling 
is attained, which results in minimum difference. As the ratio goes 
to infinity (represented at the point 10000), minimum coupling is 
reached. Similarly, Figure 7 shows the results for dataset 2. The 
problem of non-monotonic behavior of the objective function in 
Figure 7(a) for 1/LS in the range [10, 20] is because the problem 
space is not convex. In such cases, the algorithm selects a 

 

(b) (a)  
Figure 5. Two example datasets used in experimentation and 
examples of multi-representation views for two collaborative 
users (a) The gun turret dataset (b) The motorcycle dataset. 
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representation requiring smaller resources because the resource 
slack is not sufficient to fit in the next best representation. 

The experiments indicate that SSD allows smoother control over 
the strength of the influence links than SAD, as the weight 
parameters are modified. This means that for a small change in the 
weight parameters, users can balance between their coupling 
settings without abrupt changes in their respective views. 

6.1 Resource Efficiency 
Coupling the representations for users with disparate resources 
may prevent the users with greater resources from using those 
efficiently. Although the data adaptation process for user i is 
presented with a nominal maximum of available resources Ri (as 
in Eq. (2)), the actual resource usage after adaptation may be 
lower. This is the penalty of enforcing a tight coupling between 
devices with scarce resources and more resourceful devices. 

We also measured the resource efficiency as the relative error of 
the actual resources obtained by the optimization framework, and 
the limit set up by the system: 
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Figure 8 shows the resource efficiency for two users sharing 
dataset 2, using the same settings as described above. Figure 8(a) 
shows the resource efficiency for user1, i.e., the user with lower 
capabilities, while Figure 8(b) shows the resource efficiency for 
user2. As expected, the user with the lower resources achieves 
more efficient resource usage, since his/her resources determine 
the upper limit when coupling is enforced. Conversely, the users 
with higher resources get penalized under coupling since some of 
their resources end up unused. SAD shows non-monotonicity 
similar to Figure 7(a) due to the non-convex problem space. SSD 
shows better efficiency for both types of users. This indicates that 
SSD is a better model for optimizing resources under different 
coupling requirements than SAD. 

7. CONCLUSIONS 
We presented an optimization approach for providing different 
degrees of coupling in heterogeneous collaborative systems. In 
such applications, users have different preferences and resource 
availability, and it is necessary to adapt data to support 
meaningful collaboration. Our optimization approach guides the 
data adaptation process to select the best representation for each 
of the shared objects, so that both individual and group 
preferences are accounted for. We model group preference as 
influence links of varying strength. A strong link between two 
users implies high coupling, while a weak link indicates the lack 
of coupling. We have shown that finding the best representations 
can be defined as an optimization problem, where link strength 
can be specified as a single parameter to represent coupling. We 
have also presented three different methods for including these 
coupling parameters, and compared their results in a test-bed 
collaborative scenario. The results suggest that soft-constraints on 
coupling yield better satisfaction of the individual and group 
preferences than hard constraints, and provide a mechanism to 
smoothly switch between high and low coupling among users 
working on unequal platforms and having disparate preferences. 
Evaluation of the impact and usefulness of this framework in real 
collaborative scenarios is part of the future work. 
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