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Fig. 1. Topological spine of fuel injection in a combustion chamber. Top left: Cutaway view of a volume rendering of the scalar
field. Bottom left: a zoomed-in view showing the structural elements of a topological spine. Middle: A topological spine is a graphical
representation of the topology that preserves the relative position of extrema and also conveys the nesting structure of the surrounding
contours. On top we show two views of the scalar field. Right: Two persistence parameters—noise (blue) and variation (red)—can
be explored to obtain a different topological spine, highlighting different structural aspects of the scalar field, such as symmetries and
cycles. Extruding this structure in 3D allows us to create structure-preserving topological landscapes.

Abstract—We present topological spines—a new visual representation that preserves the topological and geometric structure of
a scalar field. This representation encodes the spatial relationships of the extrema of a scalar field together with the local volume
and nesting structure of the surrounding contours. Unlike other topological representations, such as contour trees, our approach
preserves the local geometric structure of the scalar field, including structural cycles that are useful for exposing symmetries in the
data. To obtain this representation, we describe a novel mechanism based on the extraction of extremum graphs—sparse subsets of
the Morse-Smale complex that retain the important structural information without the clutter and occlusion problems that arise from
visualizing the entire complex directly. Extremum graphs form a natural multiresolution structure that allows the user to suppress noise
and enhance topological features via the specification of a persistence range. Applications of our approach include the visualization
of 3D scalar fields without occlusion artifacts, and the exploratory analysis of high-dimensional functions.

Index Terms—Scalar field topology, topological spine, extremum graph, Morse-Smale complex.

1 INTRODUCTION

Topological analysis has become an important branch of scientific vi-
sualization. Not only does the topology of scalar fields encode im-
portant properties such as the number of connected components of an
iso-surface or their critical points, but various topological graphs can
be used as abstract representations of the underlying data set. Thus,
the visualization community has witnessed a number of approaches
that use topological structures as a visual summary of a complex data
set. Examples of these include the contour tree, which abstracts the
way level sets merge and split [6]; Reeb-graphs, which extend con-
tour trees to more general manifolds, potentially creating loops [25];
and Morse-Smale (MS) complexes, which decompose the function in
terms of regions of uniform gradient flow [9].

Representations like the contour tree and the Morse-Smale complex
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can be described as a graph, where nodes indicate critical points and
arcs represent various notions of neighborhood in the domain based,
for example, on the function range or steepest lines. As a structural
summary, these graphs provide a decomposition of the domain that
can be used, for example, for feature detection [15], transfer function
design [29], data mining [12], and regression [13]. To be effective
as a visual representation, however, topological graphs are typically
used in conjunction with direct volume rendering or scatterplots, since
the graphs alone are either too abstract or too complex to effectively
convey the structure of the data set. As a result, these graphs are not
well suited to support tasks that demand spatial inference.

In this paper, we introduce a new visual representation aimed at
preserving both topological and structural (geometric) properties of a
scalar field, called topological spines. Topological spines link together
chains of critical points using canonical visual representations that
preserve the topology and locality of extrema and the nesting struc-
ture of the surrounding contours. Locality in this context is defined as
the neighborhood in the Morse complex, which is roughly equivalent
to the structure of ridges/valleys connecting maxima/minima. Since
topological spines preserve this important geometric information, they
are better suited for spatial reasoning, support queries that demand
knowledge about the spatial proximity of critical points, and provide
global information such as the presence of symmetries.

The challenge to create such a visual representation is twofold: On
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Fig. 2. (a) The contour tree (bottom) of a simple 2D terrain describes
how contours merge and split to form individual components. However,
embedding the arcs of the tree into the domain (top) can connect points
arbitrarily far away (e.g., b− j). (b) An extremum graph connects crit-
ical points along steepest ascending (or descending) lines, which join
adjacent extrema and therefore better preserve locality. Even an ab-
stract representation of the extremum graph (bottom) retains some of
the geometric structure of the 2D terrain.

one hand, even as the dimensionality and complexity of data sets rise,
we aim for a representation that succinctly abstracts the way level sets
are nested and critical points are related. However, as the dimension-
ality of the data set increases, less and less of this information can
be preserved by a visualization, and global properties, such as den-
sity, symmetry, and periodicity of features, often disappear. On the
other hand, representations that capture all these structural properties,
e.g., the Morse-Smale complex, are difficult to visualize directly with-
out severe occlusion problems, especially for higher-dimensional data
sets. The challenge thereby lies in finding a representation that can
balance the need to preserve topological and geometric relationships
of critical points while avoiding excessive clutter and occlusion.

To address this problem we introduce extremum graphs, a sim-
plified substructure of the Morse-Smale complex that encodes how
neighboring extrema are connected via “ridge”- or “valley”-like sad-
dle points. The result is an intuitive structure that retains the simplicity
and readability of contour trees, as well as the geometric proximity of
the Morse-Smale complex. As an example, consider the terrain in
Fig. 2(a) and its corresponding contour tree. Arcs in the contour tree
primarily indicate proximity in function space, and the only geometric
information is that an arc describes neighboring contours of the same
genus. Since contours can be arbitarily large and complex, embed-
ding arcs in the domain (top) can lead to long unintuitive connections,
e.g. b− j. In its abstract representation (bottom), however, contour
trees lose virtually all geometric structure, and critical points in close
proximity in the domain may appear far apart in the tree, e.g. i− j.
A more natural way to connect these critical points is the extremum
graph (see Fig. 2(b)), which represents the ridge-like connections be-
tween extrema (maxima in this case) as given by the Morse complex.
Even in its abstract form the extremum graph preserves much of the
local structure and overall shape of the original features. Additionally,
extremum graphs can be defined hierarchically using two parameters:
one that helps discard structures that may be considered as unimpor-
tant (often noise), and the other that helps disconnect parts into distinct
ridge- or valley-like structures.

Topological spines are enhanced visual representations of ex-
tremum graphs that are augmented with geometric information and
the nesting structure of the surrounding contours. Consider the scalar

field in Fig. 1, which depicts fuel density in a combustion chamber
after fuel is injected. Visualizing its structure accurately is important
to understand how fuel mixes with air in the search of more efficient
combustion mechanisms. In Fig. 1 we show a topological spine of
the same data set, which preserves the Morse neighborhood of the ex-
trema. In the inset, we see that the topological spine connects extrema
via important structural saddles and depicts contours in an abstract
form to retain the nesting structure of the level sets of the function.
We provide a good depiction of this data set using planar graphs with
minimal or no occlusion artifacts while exploring the two structural
parameters. In Fig. 1(right), we show the resulting topological spine
for a different persistence interval. The scalar field is now explained
as two structures: one as the turbulent mix of air and fuel (note the
radial symmetry of extrema), and another as the tubular structure of
the fuel injection. At the bottom, we render the topological spine as a
terrain or topological landscape [34], where each peak corresponds to
an extremum, with height proportional to scalar value.

We show that topological spines are useful for abstracting the shape
and structure of complex 3D scalar fields, such as the electron density
and electrostatic potential of simple molecules and proteins. They also
act as 2D maps that facilitate feature selection and tracking, which are
challenging tasks in higher dimensions, and the resulting shapes offer
insight about the hierarchical, fractal, or cyclical structures of multi-
dimensional functions.

2 RELATED WORK

Topological analysis has received significant attention in the graph-
ics and visualization communities for both scalar and vector valued
data. The initial research has been primarily focused on comput-
ing topological structures such as the topological skeleton for vector
fields [18,30], contour trees [6,33], Reeb graphs [25,28,31], or Morse-
Smale complexes [9, 14]. Subsequently, topological structures have
been used to enhance existing visualization techniques [7, 35] as well
as for scientific analysis [5, 20].

A more recent trend is to visualize topological structures directly
in order to construct a more abstract view of various types of data.
In particular, the ability of some structures to generalize beyond three
dimensions provides an attractive alternative to standard dimension re-
duction techniques. A natural candidate is the contour tree, which can
be computed in any dimension [6] yet can always be embedded in the
plane. However, for practical data sets contour trees quickly become
too large to be displayed [7], and a proper layout can take hours to
complete. While hierarchical techniques as well as three-dimensional
layouts such as the TopoOrrery [23] alleviate some of these issues, the
resulting graphs remain too complex to be comprehensible for all but
the simplest data sets. Reeb graphs and the Morse-Smale complex are
even more detailed representations of a function’s topology, and thus
any direct visualization suffers similar problems.

Instead, the focus has shifted to develop new visual metaphors to
address the issue of visual complexity, or to selectively display care-
fully chosen subsets. Weber et al. [34] propose using topological land-
scapes to visualize contour trees. A topological landscape is a terrain
whose contours have the same function values and nesting relation as
those of a potentially high dimensional data set. Thus, one can ex-
ploit the human ability to quickly understand topographic information
to convey structural information of a function. This concept has been
extended by Harvey and Wang [17] to preserve the relative volume of
sets of contours, and used by Oesterling et al. [22] to visualize high
dimensional density distributions. However, as discussed in Section 3,
contour trees by definition do not preserve spatial locality, making the
landscapes difficult to interpret.

The Morse-Smale complex on the other hand preserves locality, but
in its entirety is far too complex to provide a meaningful visualiza-
tion. To address this problem, Gerber et al. [13] propose to use a
dual representation in which each Morse crystal (cell of highest di-
mension) is represented by a single arc connecting its minimum with
its maximum. The resulting graph is then embedded in two or three
dimensions. While representing only crystals reduces the number of
elements that are drawn, it does not address the inherent problem of in-



Fig. 3. Cancellation trees (wide blue and red lines for the minimum and
maximum trees, respectively) and remaining arcs in the Morse-Smale
complex (thin lines) for the terrain indicated by the contour lines.

creasing valence and the non-planarity of the graphs of higher dimen-
sional functions. Furthermore, in many applications crystals remain a
somewhat unintuitive representation. For example, a single mountain
might be represented by many crystals, and spatial neighborhoods be-
tween mountains are not easily understood. Similarly, Beketayev et
al. [3] use only the maxima and the arcs of the Morse-Smale complex
connected to them to represent energies in chemical systems. Unlike
Gerber et al. [13] they represent no geometric information and also
have no control over valency and thus planarity.

Instead, we propose a simple hierarchical framework that allows
the user to interactively explore structures with varying complexity.
Additionally, we enhance the display by representing selected con-
tours, their nesting relation, and their volume to provide a complete
overview of the given function. As discussed in Section 3, we select
arcs that represent important neighborhood relationships between ex-
trema. This approach, while aiming to preserve different information,
can be seen as a high dimensional extension to recent topology based
techniques to extract feature lines from surfaces [26, 36].

3 EXTREMUM GRAPHS

As mentioned above, the topological spine represents a carefully cho-
sen subset of the topological structure of a given function. In this
section we introduce the necessary theory to define extremum graphs,
which describe the connectivity of the spine, and introduce an algo-
rithm to compute them in arbitrary dimensions. Our goal is to find
a balance between a complete representation, like the Morse-Smale
complex, and an easily comprehensible representation, like the can-
cellation tree [4], which is guaranteed to be a planar graph. Properties
that should be preserved are relative location of extrema as well as
the neighborhood relation with respect to the gradient lines connect-
ing them. First, we define the Morse-Smale complex, which forms
a convenient superset of information from which to extract the ex-
tremum graphs. Subsequently, we describe an algorithm to compute
optimal extremum graphs based on L∞-optimal simplification of the
Morse-Smale complex [10]. Finally, we discuss the approximations
necessary to compute extremum graphs in higher dimensions.

3.1 Morse-Smale Complex
Let M be a smooth, n-dimensional manifold without boundary, and let
f : M→ R be a smooth function with gradient ∇ f . A point x ∈M is
called critical if ∇ f (x) = 0 or regular otherwise. A function is called
Morse if all critical points have pairwise different function value and
their Hessian matrix of second derivatives is non-degenerate. Given a
Morse function f the index of a critical point u is defined as the num-
ber of negative eigenvalues of its Hessian matrix. Minima have index
0, maxima index n, and there exist n−2 types of saddle points. At any
regular point x the gradient (vector) is well-defined, and integrating it
in both directions traces out an integral line γ(s), d

ds γ(s) = ∇ f (γ(s)),
which is said to start at a minimum and end at a maximum. The
ascending/descending manifold of a critical point u is defined as all

(a) Before cancellation (b) After cancellation

Fig. 4. Cancellation of a saddle-extremum pair. Note how the two arcs
orthogonal to the cancellation are removed, while the other two remain
in the simplified complex.

points whose integral lines start/end at u. The descending manifolds
form a complex called the Morse complex, and the ascending mani-
folds define the Morse complex of − f . Given some additional non-
degeneracy conditions, the intersections of ascending and descending
manifolds create the Morse-Smale (MS) complex of f (see Fig. 3).

The MS complex consists of n-dimensional polygonal cells called
crystals whose nodes are critical points and whose arcs are integral
lines connecting neighboring critical points that differ in index by one.
In practice, the complex often contains noise and/or features at dif-
ferent scales, and thus techniques have been developed to simplify it.
Two critical points connected in the MS complex can be canceled by
removing both nodes and reconnecting the remaining complex (see
Fig. 4). Cancellations are typically ordered by persistence—the differ-
ence in function value between the two canceled nodes—which results
in an L∞-optimal topological simplification of f . While this operation
is fairly straightforward in two dimensions (see Fig. 4), cancellations
become significantly more involved in higher dimensions [15], and a
detailed discussion is beyond the scope of this paper.

The MS complex completely describes the gradient flow of f , mak-
ing it an ideal starting point for analysis. However, for visualiza-
tion purposes the completeness is a significant drawback. Even with-
out increasing the number of extrema, the number of arcs in the MS
complex can increase exponentially with increasing dimensions. In-
tuitively, additional dimensions provide more opportunities for struc-
tures to be neighbors, which expresses itself in additional arcs. Fur-
thermore, noise can create a large number of additional saddles, each
of which creates a large number of additional arcs. Thus, display-
ing even simplified complexes of relatively simple, three-dimensional
functions [15, 16] results in convoluted images that are difficult to in-
terpret. However, to gain a high level global understanding of the
topological structure, much of the information in the MS complex is
unnecessary or even detrimental.

The structures of interest in a scalar function are almost always as-
sociated with extrema, and typically only with either maxima or min-
ima. Thus, displaying only the portions of the MS complex connect-
ing (one type of) extrema provides a first step towards reducing the
visual complexity without losing important information [3]. However,
the number of arcs can still be substantial. In particular, as shown
in Fig. 6(a), there often exist multiple arcs that connect the same (set
of) extrema. The two-dimensional example of Fig. 6(a) shows how
noise in regions of minima creates a large number of arcs connected to
maxima. Similar problems arise in all dimensions, where noise in the
(n−2)-saddles creates additional arcs connected to maxima.

3.2 Cancellation Trees
When studying maxima our goal is to select arcs corresponding to
neighborhoods relevant to maxima. One way to define a minimal set
of neighbors are cancellation trees introduced by Bremer et al. [4].
Given an MS complex they perform a persistence based simplifica-
tion, which successively merges neighboring critical points. The can-
cellation tree corresponding to a surviving maximum m is defined as
all maxima and saddles merged with m, as well as the arcs between
them (see Fig. 3). Intuitively, during the simplification each extremum
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Fig. 5. (a) Cancellation tree of maxima for a cycle of hills (top) and
its topological spine (bottom). Since a cycle cannot be canceled, the
front most saddle is part of the minima cancellation tree, and the spine
provides a misleading structure. (b) The maximum-graph of the same
terrain. Since the front most saddle (yellow) is closer in function value
to the maxima than to the center minimum, the maximum-graph closes
the cycle and creates a more appropriate topological spine (bottom).

picks its most likely neighbor by the direction that an L∞ optimal sim-
plification would direct its gradient flow. As shown in Fig. 3, by si-
multaneously simplifying the entire MS complex most spurious arcs
are removed, and the resulting cancellation trees represent ridge- and
valley-like structures.

However, the construction of cancellation trees using only cancel-
lations is too restrictive. Consider, for example, the terrain shown in
Fig. 5. The maxima describing the rim will naturally merge until only
a single representative remains (Fig. 5(a)). Since a maximum cannot
be canceled with itself, the remaining saddle will be used to cancel the
interior minimum, making it part of a minimum-tree. This breaks the
symmetry of the data and to some extent misrepresents it. Intuitively,
the saddle should be part of the rim, yet global topological constraints
prevent the cancellation trees from creating such a structure. To ad-
dress this problem we introduce extremum graphs that describe a set
of unconstrained neighbors.

3.3 Extremum Graphs

Instead of canceling critical points we note that, at least in two dimen-
sions, each saddle is either part of a minimum or a maximum can-
cellation tree. In general, saddles that appear more ridge-like belong
to the maximum-tree, while saddles that are more valley-like belong
to the minimum-tree. However, as shown in Fig. 5, in cancellation
trees this property is superseded by constraints on the topological va-
lidity of cancellations. We remove these constraints by directly classi-
fying each saddle as either connecting neighboring maxima (creating
a ridge) or neighboring minima (creating a valley) via cancellation.
Since we are interested in the global topological structure, we use an
extended notion of persistence for classification, but other metrics such
as a high dimensional version of separatrix persistence [36] could also
be applied.

Computation. Starting from a two-dimensional MS complex
the L∞-optimal extremum graphs of minima and maxima can be con-
structed by a slight variation of the standard persistence simplification.
As usual, all saddles are entered into a queue sorted on persistence.
However, unlike the traditional algorithm we compute a “persistence”
not just for valid cancellations but also for potential strangulations
(saddles connected to the same extremum twice). In each iteration
we choose the saddle with lowest persistence and classify it depend-
ing on whether its partner is a maximum or a minimum. If the pair

of critical points correspond to a valid cancellation they are simplified
and removed from the graph. Otherwise, only the saddle is removed.
The extremum graph of maxima/minima is then defined as the collec-
tion of all maxima/minima plus the saddles classified as ridges/valleys
and the arcs connecting them. Note that this strategy naturally intro-
duces cycles, since, for example, the persistence of the last rim-saddle
of Fig. 5 is lower towards its maxima than towards its minima. The
same algorithm applies in dimensions beyond two, except that there
exist additional classifications. More specifically, an n-dimensional
function defines n types of graphs: one for each successive index pair-
ing. However, as discussed above, we are typically only interested in
the [0,1] (minima) graphs and [n−1,n] (maxima) graphs.

Since the extremum graphs are constructed using a simplification
like procedure, it is natural to use the resulting persistences to remove
noise and/or small scale features. As discussed in more detail below,
we store persistences with each critical point and at run-time display
only critical points above a user defined threshold. Deciding which
arcs to display is slightly more involved, and will be described as part
of the high dimensional framework.

3.4 High-Dimensional Approximations

The biggest drawback of the algorithm discussed above is the fact that
MS complexes are expensive to compute and handle. While a gen-
eral n-dimensional algorithm has been proposed [14] it has never been
demonstrated beyond three dimensions. Furthermore, it is not obvious
how to extend cancellations to higher dimensions, and even if possible
the resources required to compute and store the complex for large data
sets would be impractical. Here we describe how to create an approxi-
mate MS complex in arbitrary dimensions, and show how this complex
naturally creates approximate extremum graphs. Furthermore, we in-
troduce an algorithm to encode extremum graphs in a multi-resolution
fashion, which helps recover some of the useful properties of the opti-
mal extremum graphs.

Approximate MS Complex. As shown, for example, in [8, 13],
it is easy to segment data of arbitrary dimension into ascending and
descending manifolds corresponding to the extrema. Furthermore, for
each neighboring pair of manifolds the highest/lowest shared point be-
tween descending/ascending manifolds must be an (n−1)/1-saddle in
the full MS complex. Since, especially in high dimensions, most other
elements of an MS complex are difficult to extract we use this set of
extrema, saddles, and connecting arcs as an approximation of the full
MS complex. Clearly, the resulting approximate MS complex is only
a subset of the true MS complex (see Fig. 6(b)) which lacks all inter-
mediate saddles of index 2 to (n− 2) as well as the 1- and (n− 1)-
saddles that either create small loops (are connected to the same ex-
tremum twice) or that duplicate existing connections between a pair of
extrema. Note that, two-dimensional functions are a special case since
they contain only one type of saddle. Therefore, some saddles of the
true MS complex shown in Fig. 6(a) are found to split both maxima
and minima, shown as valence four nodes in Fig. 6(b). In dimensions
higher than two this would not occur, and the high-dimensional ap-
proximations of the MS complex consists of two independent graphs:
one containing minima and 1-saddles, and one containing maxima and
(n−1)-saddles. In particular, one can view this approximation of the
MS complex as a directed gradient flow graph, with arcs from saddles
towards extrema.

As shown above, this directed gradient flow graph is a partial ap-
proximation of the exact MS complex and thus has missing elements.
For example, we cannot detect small loops or multiple connections.
However, given the presence of noise, it is unlikely that loops in-
volving a single extremum are significant, and multiple connections
primarily represent information about critical points unrelated to the
extrema. For example, in Fig. 6(a) the multiple connections between
maxima are due to noise around the minima. Since we aim to develop
a high level visualization rather than a detailed analysis, the missing
information is mostly non-essential. Missing elements have the effect
of classifying saddles as either part of the maxima or minima graph:
each saddle of index k is classified as belonging to the graph in which
it has a lower persistence (either the [k− 1,k] or the [k,k + 1] graph).
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Fig. 6. (a) The Morse-Smale complex of two mountain ranges separated
by a bumpy valley. The noise around minima creates additional saddle-
maxima arcs. (b) The approximate Morse-Smale complex as computed
by the high dimensional algorithm. Some saddles are detected separat-
ing both minima and maxima (valence four), while others only separate
one type of extremum (valence two). (c) The extremum graphs of the
Morse-Smale complex of (b), computed using a secondary persistence
threshold, correctly detect the ridges and valleys.

Since the directed gradient flow graph only consists of components
from the [n−1,n] and [0,1] graphs, each saddle has only one possible
classification. As a result, all saddles of this approximation connected
to maxima/minima are trivially added to the [n− 1,n]/[0,1] graphs.
This behavior may connect extrema arbitrarily far away and with high
persistences, as shown in Fig. 6(b), which would likely cancel in the
full MS complex with (n−2)-saddles. To address this issue, we intro-
duce an additional criterion to determine when a saddle should not be
part of a graph and use it to approximate the extremum graph.

Approximate Extremum Graph. We construct the approximate
extremum graph as a subset of the directed gradient flow graph that
respects two thresholds based on persistence. One threshold, plo, con-
trols noise, and all extrema with persistence below the noise threshold
are simplified. A second threshold, phi, governs variation, and deter-
mines the extent to which a saddle is ridge-like or valley-like. Saddles
with persistence above the variation threshold are removed. These
two thresholds are seen in persistence plots throughout the paper as
the lower and upper ends of a blue and red area plot, respectively.

The difference between simplification and removal is subtle. When
we simplify a saddle, its incident arcs may still have to be displayed.
Consider the volcano shown in Fig. 5(b). If after simplification the rim
is represented by a single maximum, we wish to retain the arcs of the
simplified saddles to mark the ridge. On the other hand, if we cut the
cycle, as shown in Fig. 5(a), then we remove both the saddle in yellow
and its incident arcs.

To achieve this goal, we compute two measures for each critical
point: its persistence p and its saturated persistence p? ≥ p. The per-
sistence is computed during construction, and is at run-time compared
against the noise threshold—for extrema—and also against the vari-
ation threshold—for saddles. Saturated persistence is slightly more
involved. Conceptually, the saturated persistence of an arc a is the
persistence of the last (highest-persistence) extremum u that needed a
to be connected to the extremum graph. In practice, we compute satu-
rated persistences by keeping track of the set of arcs that connect as yet
unsimplified extrema. Each simplification reverses the arcs between
the two canceled critical points, and thus creates new paths between
the remaining critical points. At any time during the simplification, a
saddle can find its current neighboring, unsimplified extrema by fol-
lowing the paths through its two outgoing directed arcs. When cancel-
ing a saddle s with persistence p, it is clear that all saddles along the
arcs connecting s with its neighboring extrema must have a saturated
persistence of at least p (since they are used by s for lower noise thresh-
olds). We compare the saturated persistence with the noise threshold
to determine whether a saddle must display its arcs. Because the two
arcs incident on a saddle have the same saturated persistence p?, we
store p? with the saddle. The algorithm to compute both measures
is shown in Algorithm 1. It takes as input the directed gradient flow
graph and outputs a weighted extremum graph with persistences and
saturated persistences for each critical point.

input : Scalar field f and gradient flow graph G = (N,E)
output: Persistence P and saturated persistence P? for each node

P(N)← P?(N)← ∞ Initialize persistence
Q←{〈s,0〉 : s ∈ SADDLES(N)} Insert all saddles into priority queue
while Q 6= ∅ do
〈s, p〉 ← POP(Q) Pop lowest-persistence saddle
〈u,v〉 ← NEIGHBORS(G,s) Adjacent extrema
U ← PATH(G,s,u)
V ← PATH(G,s,v) Follow paths from s through u and v...
û← TAIL(U ) ... to terminal extrema û and v̂
v̂← TAIL(V )
p←min{| f (û)− f (s)|, | f (v̂)− f (s)|} Lazy-update persistence
if Q 6= ∅ and p > minQ then No longer lowest persistence?

Q← Q∪〈s, p〉 Reinsert into queue
else

P(s)← p Assign persistence to saddle
P?(SADDLES(U ∪V ))← p Update saturated persistence
if û 6= v̂ then Do U and V not form a cycle?

if | f (û)− f (s)|< | f (v̂)− f (s)| then
P(û)← p Cancel s with û
REVERSE(G,U ) Redirect flow from û to v̂

else
P(v̂)← p Cancel s with v̂
REVERSE(G,V ) Redirect flow from v̂ to û

Algorithm 1. Approximate extremum graph computation. The func-
tion PATH(G,s,u) returns the sequence of critical points (s,u, . . . , û)
on the maximal path in G starting with the arc su. REVERSE(G,P)
modifies G by reversing the direction of all arcs on a path P.

Once we have determined these values, the extremum graph GR =
{NR,ER} corresponding to a threshold range R = [plo, phi] is formed
as a subset of the gradient flow graph G = (N,E):

extrema u ∈ N u ∈ NR ⇐⇒ R∩ [0, p(u)] 6= ∅ (1)
saddles s ∈ N s ∈ NR ⇐⇒ R∩ [p(s), p(s)] 6= ∅ (2)
arcs su ∈ E su ∈ ER ⇐⇒ R∩ [p(s), p?(s)] 6= ∅ (3)

where p is the persistence associated with an extremum u or saddle s,
and where p? is the saturated persistence associated with the two arcs
of a saddle s.

The structure described above provides a multi-resolution encoding
of extremum graphs that allows a user to explore different resolutions
and feature sizes. Raising the noise threshold removes low persis-
tence extrema, while lowering the variation threshold prevents merg-
ing across high-persistence saddles. Note that an upper threshold may
be useful even if the complete MS complex is known. There likely ex-
ist saddles which have high persistence in both their candidate graphs,
in which case not connecting the corresponding critical points may be
a more intuitive representation of the global topology.

4 TOPOLOGICAL SPINES

The extremum graph alone is a graphical representation that retains
the structure of the scalar field, but does not convey information about
the distribution and density of the function values, the size of fea-
tures, or how contours merge. Thus, we desire a representation that
can succinctly describe how the function values change in the domain.
Such a representation should allow users to identify features in terms
of size, density, or function value. To this end, we define the topolog-
ical spine: a visual representation of the extremum graph augmented
with geometric and contour nesting information. This representation
consists of a collection of canonical visual elements, each of which
encodes information about an extremum-saddle-extremum path. Since
a scalar function defines both a maximum and a minimum graph, one
can derive two topological spines for each function. For brevity we de-
scribe our method for the maximum-graph—the construction for the
minimum-graph is analogous.



4.1 Canonical Topological Links
The basic element of a topological spine is a canonical topological
link. We call it canonical, since it abstracts the nesting behavior
and enclosed volume of (portions of) contours around an extremum-
saddle-extremum triplet. As shown on top of Fig. 7, for each triplet
we draw the contour through the saddle, called the critical contour,
as a figure-eight shape (yellow) created by the geometric convolu-
tion (Minkowski sum) of a (infinite) set of circles centered on the
extremum-saddle arc, with the radius of each lobe proportional to
the enclosed volume. Optionally, we also draw additional pesudo-
contours above the saddle contour (beige), indicating regions around
the extrema, and below (green) indicating contours surrounding the
triplet. As with the critical contour the radii of additional contours are
determined by the corresponding volume, as defined in Section 4.2.
The link to the volume ensures that contours at lower iso-values are
guaranteed to have a larger radius than higher contours and thus pre-
serve the correct nesting behavior. Neighboring triplets share extrema
and by construction their canonical links agree at extrema. Finally,
drawing higher contours on top of lower contours naturally creates an
intuitive nesting structure, as shown in Fig. 1.

4.2 Link Radius
As discussed above, canonical links are created as a convolution of
circles centered on the extremum-saddle arc. To define their radii we
first assign a function value to each point along the arc by linear inter-
polation between the function value of the maximum and the saddle.
Subsequently, given a maximum-saddle arc us and an isovalue c the
radius at a point p ∈ us is computed as the volume enclosed between
f−1(c) and f−1( f (p)) restricted to the descending manifold of u:

rus(c, p) = |{x ∈ D(u) : min(c, f (p)) < f (x) < max(c, f (p))}|.

Fig. 7 shows several examples for different contours and locations. In
the second row the critical contour at f (s) is shown at the maximum
with a radius equal to the area enclosed by the corresponding contour
of the function. The third row shows the critical contour at the half way
point between u and s with a radius equal to area between the contours
at f (s) and f (u)+ f (s)

2 . Since c = f (s) for the critical contour, the radius
r( f (s),s) = 0, resulting in the figure-eight configuration typically as-
sociated with a saddle. The fourth and fifth rows show a contour with
c < f (s) at the maximum and the saddle, respectively.

4.3 Properties
Since the primary focus of topological spines is to provide insight into
the topology and geometry of functions difficult or impossible to vi-
sualize directly (e.g. high dimensional functions) it is important to
understand what properties of the source function are preserved and to
what extent. In particular, one can identify three properties of interest:
Relative Location of Extrema. By construction, extrema graphs pre-
serve the connectivity of high-persistence arcs in the Morse-Smale
complex. Given an extremum, these can be seen as the most impor-
tant neighboring extrema or, alternatively, those extrema connected by
important ridges/valleys. While these arcs do not necessarily corre-
spond to purely geometric distances/neighborhoods among extrema,
they describe the “functional” neighborhoods defined by the gradient
flow that are typically the structures of primary interest.
Volume Preservation. As described above, we augment all links with
the information about the enclosed volume, and thus the relative thick-
ness of the pseudo-contours corresponds to the relative volume en-
closed by the corresponding contours in the domain.
Contour Nesting. By construction, we guarantee that in a maximum-
graph, for example, pseudo-contours of lower isovalue always have
a larger radius than those corresponding to higher isovalues. This in
turn guarantees that the nesting of contours shown around the extrema
and saddles is preserved. However, since extremum graphs use only
a subset of the arcs of the Morse-Smale complex, the genus of these
contours may not be preserved, as shown in Fig. 5. Furthermore, the
nesting can only be preserved for planar graphs laid out without self-
intersections. However, as we show in our results, depending on the

Regular Contour

Critical Contour

ExtremumSaddle

u s

r(f(s), u)

p

r(f(s), p)

r(c, u)       c<f(s)

r(c,s)   c<f(s)

Fig. 7. Each region in the domain (left) gets encoded as a correspond-
ing circle on the right. Rows 2 and 3 show the encoding of the critical
contour f (s) at the extremum u and a point p between the extremum and
the saddle, where the radius of each circle is determined by the volume
of the region formed by the descending manifold of u and the contours
at f (s) and f (u). Rows 3 and 4 show the encoding of a larger level set
with isovalue c < f (s) that encloses the ones above.

resolution level of the structural parameters, we usually find a suitable
planar representation of a scalar field.

4.4 Rendering
We draw the geometric structures computed using the mechanism de-
scribed above for a series of isovalues. By default, we select all iso-
values corresponding to the critical points of the scalar field. To avoid
clutter, however, we enforce a minimum difference in isovalue that can
be set by the user. We use two different color encodings in our visu-
alization, selected by the user: by scalar value, as shown in Fig. 1, or
by topological segment, as shown in Fig. 9(d). Colors and opacities
are changed in real-time via a transfer function editor. The locations
of the vertices of the topological spine are computed using a force-
directed layout algorithm, which models the topological spine as a
mass-spring model. To ensure that distances are somewhat preserved,
the rest lengths of the springs are proportional to the Euclidean dis-
tance between two critical points. Alternative layouts for graphs can
be used [32].

4.5 Multi-resolution Topological Spines
As described in Section 3, we express a family of extremum graphs in
terms of two parameters: a lower persistence threshold plo, which is
used to filter out noise, and an upper threshold phi (or variation), which
is used to separate distinct features that if joined would not be repre-
sentative of ridge-like structures. These two persistence thresholds
allow exploration of the multi-resolution representation of topological
spines. To find suitable values for these thresholds, we look at stability
regions of the extended persistence plot, as shown in Fig. 8(b). This
plot consists of two curves: A persistence plot (blue), which shows
the number of extrema remaining in the extremum graph after simpli-
fication using a given noise threshold plo. Plateaus in this plot indicate



regions where the structure is stable. Here, we compute the topological
spine of the electron density of the cyclohexane molecule, formed by
a cycle of twelve hydrogen and six carbon atoms (Fig. 8(b)). We see
two stable regions: one starting at plo = 0.015, at which noisy features
are removed, and another starting at plo = 0.1, at which the hydro-
gen atoms are removed. The second curve is a variation plot (red),
which shows the number of arcs that remain in the graph after pruning
those with persistence larger than the upper threshold phi. Similarly,
plateaus indicate regions where the ridge-like features are stable. The
stable region starting at phi = 0.32 corresponds to the structure that
connects the carbon atoms. In the stable region between 0.1 and 0.28,
the molecule is broken into six CH2 components. Fig. 8 shows the
resulting topological spines for two lower and three upper bounds.

5 RESULTS

We have applied our technique to the analysis and visualization of
scalar fields and the exploration of high-dimensional functions.

Geometric Structure from Scalar Fields. Our representation
allows us to show complex geometric structures as 2D graphs. We
have explored the use of our representation for a series of scalar fields.
Fig. 1 shows the structure of fuel injection in a combustion cham-
ber. We present two representations . The main representation in the
middle succinctly summarizes the structure as two distinct parts: one
consisting of the fuel injection itself, where the density of fuel is high
(compared to air), that can be represented as a rod, and the other con-
sisting of a radially symmetric expansion, where fuel mixes with air
and produces turbulence. After exploring the two persistence param-
eters, we obtain a different topological spine (right), which reveals a
more complex structure for the turbulent region, formed as two con-
centric rings of medium to low fuel density.

Fig. 9(a) shows volume renderings of the negative high potential of
a protein. Color encodes the descending manifold of each extremum
(top) or function value (bottom). Figs. 9(c–d) show the topological
spines with color encoding function value and topological segmenta-
tion, respectively. Our approach extracts the symmetries of the scalar
field, which are usually not preserved in the contour tree or the cancel-
lation tree, since we are able to extract a cycle of extrema correspond-
ing to the ring of atoms in the molecule. Fig. 9(b) shows a structure-
preserving topological landscape, as described in detail below.

Fig. 10(right) shows the topological spine for a vortex simulation.
The color represents vorticity for the 3D rendering on the top left, and
segmentation on the bottom left and on the right. The fact that the
resulting representation does not show a particular symmetry reveals
the turbulent nature of the simulation. Nonetheless, since the spine is
a 2D representation, it becomes easier to track and connect adjacent
features in this structure than in the 3D space directly or using the MS
complex, which would result in an overwhelming number of intersect-
ing edges. Using our representation, we can select groups of adjacent
extrema and tag them as features of interest. The blue circled extrema
in the spine are highlighted in the 3D rendering, for instance.

Fig. 12(a) shows a scalar field representing the carbon molecule C60
(Buckminster Fullerene), also known as the Bucky ball. Fig. 12(b)
shows the persistence plot and a planar graph describing the same
structure. If we preserve the distances in the topological spine
(Fig. 12(c)), the resulting structure contains intersections and may be
difficult to read. Nonetheless, we can still see the projected structure.
Using the entire MS complex approximation (i.e., setting phi = ∞) re-
sults in a highly non-planar graph (Fig. 12(b)), and any layout of such
a graph would prevent us from recognizing the Bucky ball structure.
If we do not enforce the preservation of distances for all edges, we can
“open” the Buckyball and obtain a representation (Fig. 12(d)) more
similar to the canonical planar graph representation (Fig. 12(b)).

Our approach has applications in crystallographic topology. The
topology of electron density is known to describe the structure of a
molecule and can be explained by the quantum structure [2, 11]. Pas-
cucci et al. [24] show that solutions based on contour trees fail to make
a distinction between chains and rings or other complex structures,
and seldom produce a structure that resembles the canonical (abstract)
chemical notation. Leherte et al. build a critical point graph based on
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Fig. 8. Multi-resolution exploration of the density field of a cyclohex-
ane molecule. (a) Electron density and schematic representation of the
molecule. (b) Persistence plot, highlighting the region of persistence
(blue) and saturated persistence (red) of interest. (c) Grid of multi-
resolution representations for two noise thresholds (top: plo = 0.015;
bottom: plo = 0) and three variation values. The most informative spine
is at plo = 0.015, which gets rid of noise, and phi = 0.35, which connects
the carbon bonds, and is found as the first plateau in the red curve
around p = 0.35.

domain knowledge and geometric constraints to extract the primary
3D structure of proteins [21]. Johnson et al. suggest that the connec-
tions between critical points can indeed be extracted from the Morse
complex of electron density [19]. However, as we point out, this re-
sults in a number of additional bonds that are not representative of
a protein structure. Topological spines have the additional benefits of
showing contour nesting and representing a family of structures, which
together can lead to a better understanding of a complex molecule.
Fig. 8 shows the structure extracted from the cyclohexane molecule.
Similarly, Fig. 11 shows the topological spine and topological land-
scape for isopentane, resembling the schematic of the molecule.

High-dimensional Data Exploration. Topological spines easily
generalize to higher-dimensional data sets. One of its applications is
in optimization, where we are often interested in finding the structure
of the local extrema of non-convex functions. The lack of structure-
preserving visualization algorithms has prevented scientists and engi-
neers from exploring these functions visually in higher dimensions.

Fig. 13(a) shows the topological spine for the 2D, 3D, 4D and 5D
Ackley’s path function. This function was designed by Ackley to test
hill climbing strategies and other algorithms [1]. The function has a
well-defined structure: it has a deep global minimum at x = (0,0) in
the middle of progressively shallower local minima. In 2D, we find
eight local minima, which together with the global minimum form a
3× 3 grid. In higher dimensions the local minima can be found as
the cartesian product of three minima. Therefore, we should expect
3d extrema in total and a global minimum connected to 2d extrema,
one in the positive and negative direction along every dimension. In
the 2D case, the planarity of the graph allows us to afford the de-
piction of the cyclical structure of the extrema. However, for higher



(a)
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(b)

(c) (d)

Fig. 9. Neghip data set (a) volume rendering, where color denotes each
descending manifold (top) or scalar value (bottom). (b) Persistence plot
and topological spine as a landscape (c–d) topological spines depict-
ing scalar value (c) or topological segments (d). Our topological spine
preserves the symmetry and cyclic structure of the molecule.

0.04 0.68

Fig. 10. Vorticity. Color coding each descending manifold allows us to
identify and select features with ease. The planarity of the spine elim-
inates occlusion problems and facilitates feature selection. The circle
contours in the topological spine allows us to select a features, high-
lighted in the 3D rendering in the bottom left corner.

dimensions it is easier to understand the function when we prune away
high-persistence arcs that form cycles, since the resulting tree is now
a 2D planar graph. This produces a clear view of the structure of the
data set and the relative volume of the descending manifold associated
with each extremum.

Fig. 13(b) shows Schwefel’s multimodal function [27], whose local
extrema are geometrically far apart in the domain. Similar to Ackley’s
path function, Schwefel’s is designed for testing optimization algo-
rithms. In 2D, this data set is formed by two cycles of extrema con-
nected by a spiraling valley of minima. We show topological spines

0.01 0.36

Fig. 11. Electron density of isopentane. Top: schematic and persis-
tence plot. Middle: 3D rendering and corresponding topological spine,
which accurately depicts the molecular structure. Bottom: 3D rendering
with color encoding each descending manifold, and structure-preserving
landscape, obtained by vertically extruding the spine.

(a)
0.057 0.6

(b)

(c) (d)

Fig. 12. (a) Bucky ball with color encoding descending manifolds. (b)
Planar representation, 2D MS complex layout, and persistence plot. (c)
A topological spine that preserves distances appears as a projection.
Unlike in the 3D rendering, we now clearly see both the global structure
and the local nesting of each bond. (d) By constraining the positions of
nodes in one cycle, we can obtain a planar spine representation.

for the 3D and 4D functions, which highlight the fractal nature of this
data set. The graphical shape formed by the arcs and cycles corre-
sponds to geometric structures in the data that helps us predict what
the function does in higher dimensions.
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Fig. 13. Topological spines of high dimensional functions. (a) Ackley’s path function in 2–5 dimensions, which reveals structural properties, such as
the 2d-fold radial symmetry and the exponential increase in complexity (the number of extrema is 3d ). (b) Schwefel’s function in 2D–4D. Note that
the fractal structure and the cardinality of the different geometric structures are preserved.

Structure-preserving Topological Landscapes. Topological
landscapes were introduced by Weber et al. [34] as intuitive visual-
izations of the contour tree of scalar fields. These landscapes lever-
age our ability to read and interpret elevation maps to understand the
shape of a function. This metaphor has also been extended to higher-
dimensional data sets [17, 22]. Since contour trees do not inherently
encode spatial information, as shown in Section 3, proximity relation-
ships in topological landscapes are usually arbitrary.

We here extend topological landscapes to preserve spatial locality.
Our topological spine representation can be thought of as an approxi-
mate 2D contour map of the underlying scalar field. By extruding these
contours in the third dimension according to their associated function
values, we readily obtain a structure-preserving topological landscape.

One example is shown in Fig. 9(b) for the neghip data set. The
shape and height of each hill here makes the density and persistence
of each extremum more salient. Fig. 11(b) reveals the hierarchical
structure of the density field of the isopentane molecule. The differ-
ence in scalar value of the H and C atoms (smaller and larger hills,
respectively), is now more evident than in the 2D topological spine.

6 LIMITATIONS

Topological spines, and the underlying extremum graphs, offer a
mechanism for displaying the structure and topology of a scalar field.
Due to its construction, we consider the maximum and minimum
graphs as independent. Therefore, the interplay between maxima and
minima may not be evident from looking at the two corresponding
topological spines. Topological spines and their landscape counter-
parts are most effective when the extremum graph is reduced to a pla-
nar graph. We have seen that this is the case for many complex struc-
tures such as the Bucky ball. In fact, many of the MS complex arcs
that make these structures non-planar connect extrema via non-ridge
and non-valley like saddles, and seldom help understand the structure.
Nonetheless, there may be cases where the visualizations of these con-
nections is important. Our algorithm allows the user to explore the two
persistence thresholds, noise and variation, at runtime, and enables the
exploration of structures from the global MS complex to more mean-
ingful local structures. Topological spines rely on setting two persis-
tence thresholds. The notion of stability of the extremum graph proves
effective to finding suitable threshold values. In certain cases, no ob-
vious stability regions are found. Again, interactivity is key and the
ability to explore these in real-time minimizes the effort required to
find good values. Topological spines are designed to preserve struc-
tural properties, including the local symmetries and cardinalities of
extrema, and the relative volume of different spatial regions. Other
geometric properties, such as shape and curvature, are usually not pre-
served in our approach. We believe our technique is an abstraction

suitable for spatial reasoning that may be combined with other tech-
niques to supply missing geometric information.

7 SUMMARY

When confronted with tasks that involve spatial reasoning, direct vi-
sualization of complex, possibly high dimensional datasets proves im-
practical. Even for 3D data sets, we have shown that contour trees do
not preserve the locality of extrema and other critical points.

In this paper, we have presented a data structure—the extremum
graph—and a visual representation that augments this structure with
geometric information—the topological spine. After our study of
this representation and validation on a number of scalar fields, we
have identified a number of practical use cases for this representa-
tion: For 3D scalar field visualization, the topological spine provides
an overview of the data set as a network of 1D embedded structures
that are usually sparse. This approach solves the occlusion issues of di-
rect volume rendering and the clutter associated with projections. Al-
though 3D exploration is still an important task, the topological spine
provides an occlusion-free 2D map that helps identify structures faster
and more accurately. For higher-dimensional exploration, there is no
direct counterpart to 3D volume rendering, and one usually resorts to
projections. Because the topological spine encodes geometric infor-
mation, it can suggest to the user where to steer their attention.

Topological spines create shape signatures in 2D to represent com-
plex relationships between extrema. In our studies, we have encoun-
tered that patterns such as hierarchies of extrema, cycles (e.g., tori in
3D), and fractals, can be identified with ease using our representation.
This proves useful for understanding complex structures by analyzing
the formation of structures that are smaller and easier to comprehend.

As shown in our examples and the accompanying video, interac-
tivity plays an important role in understanding structure. Here, inter-
activity refers to the ability to explore the structural parameters of a
scalar function, in terms of what defines noise vs. a feature, and how
well connected features are. We introduced a parameter space as a
range in persistence, which extends the idea of topological simplifi-
cation towards the preservation of structurally important connections
between extrema. We found that the notion of stability of persistence
is a valuable hint that aids in the selection of parameter values.

Our approach defines structure in terms of low-level parameters that
govern the topology of a scalar field. Higher-level properties, such as
symmetry, appear as a side-effect. Alternatively, one can formulate the
problem of structure-preserving visualization as the generation of an
image that best depicts a target structure. Our approach currently em-
ploys local strategies, but topological spines can also leverage global
strategies, including automatic symmetry detection.



REFERENCES

[1] D. H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer,
Boston, 1987.

[2] R. F. W. Bader. Atoms in Molecules: A Quantum Theory. Oxford Uni-
versity Press, 1994.

[3] K. Beketayev, G. Weber, M. Haranczyk, M. Hlawitschka, P.-T. Bremer,
and B. Hamann. Topology-based visualization of transformation path-
ways in complex chemical systems. In Eurographics Symposium on Vi-
sualization, 2011. To appear.

[4] P.-T. Bremer, V. Pascucci, and B. Hamann. Maximizing adaptivity in
hierarchical topological models. In Shape Modeling and Applications,
pages 298–307, 2005.

[5] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. B.
Bell. Interactive exploration and analysis of large scale simulations using
topology-based data segmentation. IEEE Transactions on Visualization
and Computer Graphics, 2010. To appear.

[6] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all di-
mensions. Computational Geometry, 24(2):75–94, 2003.

[7] H. Carr, J. Snoeyink, and M. van de Panne. Flexible isosurfaces: Sim-
plifying and displaying scalar topology using the contour tree. Computa-
tional Geometry, 43(1):42–58, 2010.

[8] F. Chazal, L. Guibas, S. Oudot, and P. Skraba. Analysis of scalar fields
over point cloud data. In ACM-SIAM Symposium on Discrete Algorithms,
pages 1021–1030, 2009.

[9] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale
complexes for piecewise linear 3-manifolds. In ACM Symposium on
Computational geometry, pages 361–370, 2003.

[10] H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-sensitive sim-
plification functions on 2-manifolds. In Proceedings of the twenty-second
annual symposium on Computational geometry, SCG ’06, pages 127–
134, New York, NY, USA, 2006. ACM.

[11] E. Espinosa, M. Souhassou, H. Lachekar, and C. Lecomte. Topological
analysis of the electron density in hydrogen bonds. Acta Crystallograph-
ica Section B-structural Science, 55:563–572, 1999.

[12] I. Fujishiro, Y. Takeshima, T. Azuma, and S. Takahashi. Volume data
mining using 3D field topology analysis. IEEE Computer Graphics &
Applications, 20(5):46–51, 2000.

[13] S. Gerber, P.-T. Bremer, V. Pascucci, and R. T. Whitaker. Visual ex-
ploration of high dimensional scalar functions. IEEE Transactions on
Visualization and Computer Graphics, 16(6):1271–1280, 2010.

[14] A. Gyulassy, P.-T. Bremer, V. Pascucci, and B. Hamann. A practical
approach to Morse-Smale complex computation: Scalability and gen-
erality. IEEE Transactions on Visualization and Computer Graphics,
14(6):1619–1626, 2008.

[15] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann.
Topology-based simplification for feature extraction from 3D scalar
fields. IEEE Transactions on Computer Graphics and Visualization,
12(4):474–484, 2006.

[16] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient com-
putation of Morse-Smale complexes for three-dimensional scalar func-
tions. IEEE Transactions on Visualization and Computer Graphics,
13(6):1440–1447, 2007.

[17] W. Harvey and Y. Wang. Topological landscape ensembles for visualiza-
tion of scalar-valued functions. Computer Graphics Forum, 29(3):993–

1002, 2010.
[18] J. L. Helman and L. Hesselink. Visualizing vector field topology in fluid

flows. IEEE Computer Graphics & Applications, 11(3):36–46, 1991.
[19] C. K. Johnson, M. N. Burnett, and W. D. Dunbar. Crystallographic Topol-

ogy and its Applications, pages 1–25. 1996.
[20] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci. Un-

derstanding the structure of the turbulent mixing layer in hydrodynamic
instabilities. IEEE Transactions on Visualization and Computer Graph-
ics, 12(5):1052–1060, 2006.

[21] L. Leherte, J. Glasgow, K. Baxter, E. Steeg, and S. Fortier. Analysis
of Three-Dimensional Protein Images. Journal of Artificial Intelligence
Research, 7:125–159, 1997.

[22] P. Oesterling, C. Heine, H. Janicke, G. Scheuermann, and G. Heyer. Vi-
sualization of high dimensional point clouds using their density distri-
bution’s topology. IEEE Transactions on Visualization and Computer
Graphics, 2011. To appear.

[23] V. Pascucci, K. Cole-MacLaughlin, and G.Scorzelli. Multi-resolution
computation and presentation of contour trees. Technical Report UCRL-
PROC-208680, Lawrence Livermore National Laboratory, 2005.

[24] V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topol-
ogy of level sets. Algorithmica, 38:249–268, 2003.

[25] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust
on-line computation of Reeb graphs: Simplicity and speed. ACM Trans-
actions on Graphics, 26(3):58.1–58.9, 2007.

[26] J. Sahner, B. Weber, S. Prohaska, and H. Lamecker. Extraction of fea-
ture lines on surface meshes based on discrete Morse theory. Computer
Graphics Forum, 27(3):735–742, 2008.

[27] H. Schwefel. Numerical optimization of computer models. Wiley, 1981.
[28] Y. Shinagawa and T. Kunii. Constructing a Reeb graph automatically

from cross sections. IEEE Computer Graphics & Applications, 11(5):44–
51, 1991.

[29] S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skele-
tonization and its application to transfer function design. Graphical Mod-
els, 66(1):24–49, 2004.

[30] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P.Seidel. Saddle connectors
— An approach to visualizing the topological skeleton of complex 3D
vector fields. In IEEE Visualization, pages 225–232, 2003.

[31] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop surgery for volu-
metric meshes: Reeb graphs reduced to contour trees. IEEE Transactions
on Visualization and Computer Graphics, 15(6):1177–1184, 2009.

[32] I. G. Tollis, G. Di Battista, P. Eades, and R. Tamassia. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, July 1998.

[33] M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and
D. Schikore. Contour trees and small seed sets for isosurface traversal.
In ACM Symposium on Computational Geometry, pages 212–220, 1997.

[34] G. Weber, P.-T. Bremer, and V. Pascucci. Topological landscapes: A
terrain metaphor for scientific data. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1077–2626, 2007.

[35] G. Weber, G. Scheuermann, H. Hagen, and B. Hamann. Exploring scalar
fields using critical isovalues. In IEEE Visualization, pages 171–178,
2002.

[36] T. Weinkauf and D. Günther. Separatrix persistence: Extraction of salient
edges on surfaces using topological methods. Computer Graphics Forum,
28(5):1519–1528, 2009.


