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Fig. 1. Synthesized images (top) of CT head data set using proxy images (bottom). (a) Using multi-perspective proxy images, we can
visualize multiple layers of a 3D object (shown in (b)) in multiple orientations. We can also inexpensively simulate complex lighting
models such as proxy-based ambient occlusion, while retaining the spatial relationships between semi-transparent layers. This is
done without accessing 3D volume data. (c) Accumulated attenuation proxy images allow us to explore data sets in transfer function
space and to apply depth-aware enhancement, which highlights shape and alleviates depth ambiguities, often found in static images.
(d) We can combine accumulated attenuation proxy images (shown in (c)), with depth proxy images (below) to support lighting effects.
(g) Multi-perspective accumulated attenuation proxy images allow us to visualize a volumetric object in multiple orientations.

Abstract—Interactivity is key to exploration of volume data. Interactivity may be hindered due to many factors, e.g. large data size,
high resolution or complexity of a data set, or an expensive rendering algorithm. We present a novel framework for visualizing volume
data that enables interactive exploration using proxy images, without accessing the original 3D data. Data exploration using direct
volume rendering requires multiple (often redundant) accesses to possibly large amounts of data. The notion of visualization by proxy
relies on the ability to defer operations traditionally used for exploring 3D data to a more suitable intermediate representation for
interaction - proxy images. Such operations include view changes, transfer function exploration, and relighting. While previous work
has addressed specific interaction needs, we provide a complete solution that enables real-time interaction with large data sets and

has low hardware and storage requirements.

Index Terms—Volume visualization, deferred interaction, image-based rendering, volume distortion camera.

1 INTRODUCTION

Interactivity provides enhanced perception of depth and adds realism
to rendered images. Thus, it is essential for meaningful exploration of
volume data sets. Exploration in 3D space usually implies exploration
in both view and transfer function domains. Direct volume render-
ing provides these capabilities; however, it requires multiple (often
redundant) accesses to the entire volume. Thus, interactivity may be
adversely affected by large data size, high resolution or complexity of
a data set, or an expensive rendering algorithm. This problem is exac-
erbated when the data is visualized remotely, as is common for in-situ
and distance visualization, and rendering on low-end devices.

One solution to this problem is reducing the amount of data that
has to be accessed to generate new images of the data. Previous ap-
proaches store a collection of rendered “training” images instead of the
volume itself. New results are synthesized by finding correspondences
and combining the training images. For example, image-based render-
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ing techniques enable view changes by storing a collection of images,
rendered from different viewpoints. The lack of explicit 3D informa-
tion, however, prevents the user from changing the color and opacity
of the data depicted in the images. Exploration in transfer function
space can be enabled by a similar approach: generating a collection
of images, rendered with different transfer function settings. Then,
transfer function changes can be simulated by synthesizing new im-
ages from the training set. Other previous work focuses on providing
fast transfer function changes by caching view-dependent samples. In
such approaches, 3D information is still necessary and the cached data
is invalidated as the view changes.

In this paper, we describe a novel framework for interactive explo-
ration of 3D data that unifies the representations for multiple types of
interaction. The notion of visualization by proxy relies on the abil-
ity to defer operations, traditionally used to explore 3D volume data,
to a more suitable intermediate representation for interaction - proxy
images. Such operations include view changes, transfer function ex-
ploration, and relighting.

To achieve this, we represent a volume as a collection of proxy im-
ages. Each type of a proxy image contains different information, nec-
essary for enabling a particular exploratory operation. Users can mix
and match proxy images, based on the kind of exploratory operations
they wish to perform. To enable rotation, we develop a novel volume
distortion camera model for generating multi-perspective images. It



allows us to store information for different orientations of a 3D ob-
ject in a singe image, as opposed to rendering multiple images from
different viewpoints. We also present a novel image-based transfer
function design algorithm. It employs inexpensive machine learning
techniques to accurately predict color, based on varying distributions
of attenuation. To enable exploration in transfer function space, in-
stead of storing a set of training images with different combinations
of transfer function parameters, we fit a model that predicts the final
color for different combinations of accumulated attenuation. We gen-
erate proxy images containing accumulated attenuation, or distribution
of attenuation along a ray with respect to intensity values. Depth proxy
images enable interactive relighting and application of different shad-
ing methods, such as proxy-based ambient occlusion, which increases
realism by taking into account the attenuation of light. When depth in-
formation is not available, we use the accumulated attenuation proxy
images to apply a non-realistic shading method - feature enhancement.
Although depth images have been used in the past to defer lighting and
rendering operations on volumes, we have tackled the difficult task of
extending them to multi-view perspective proxy images to perform ro-
tation and relighting of an object for different orientations. We also
combine multi-perspective proxy images with light attenuation mod-
els to synthesize new views of volume data from different orientations,
with different lighting parameters, and with various opacity mappings.

Our goal is to provide users with a compact representation of 3D
data and an interactive visualization system that can run on a standard
desktop computer, mobile device, or within a browser. In this paper,
we describe interactive exploration methods using proxy images that
can be implemented on the GPU with relative ease. Through visual
and quantitative evaluation, we show that our approach is an affordable
and effective solution for preview and exploratory visualization.

2 RELATED WORK

Due to the ubiquity and popularity of image processing, image-based
rendering is a popular alternative for view synthesis, 3D geometry re-
construction, relighting, and multi-layer rendering [7]. A large body
of research is devoted to the problem of view reconstruction from a
single image and from multiple images. The most common approach
involves unconventional cameras, such as the pushbroom camera [5]
and the two-slit camera [19]. To alleviate disocclusion artifacts, the
light field [9] and the lumigraph [4] use a 2D array of planar pinhole
cameras. No disocclusion errors occur, but view synthesis for new
orientations requires a large database of images. Other approaches
include the multiple-center-of-projection cameras [23] and multiper-
spective rendering [32, 34]. McMillan and Bishop [17] describe a 3D
warping approach using depth images. The scene is rendered from
new viewpoints by splatting or by rendering a mesh connecting the
warped samples. Mark et. al. propose to accelerate conventional ren-
dering by warping two reference images [14]. When rendering indi-
vidual objects rather than complex scenes, simple non-pinhole cam-
eras seem to suffice, as demonstrated by the depth discontinuity oc-
clusion camera by Popescu and Aliaga [21], the occlusion camera by
Mei et. al. [18], and the general pinhole camera by Popescu et. al. [22].
Their work, however, assumes that an object can be represented as a
surface model and that the intersections of that surface with the view
ray can be uniquely defined. We present a new camera model, inspired
by the occlusion camera and extended to volumetric objects. It enables
the reconstruction and recomposition of multiple semi-transparent lay-
ers or intervals using a small number of 2D images.

Layer-based rendering techniques offer a different solution. They
store samples occluded in the reference view in additional layers at
each pixel. Shade et al. propose layered depth images (LDI), whose
pixels contain a list of color and depth values [27]. Depth values allow
to display the appropriate parallax induced by camera motion. Multi-
layered representations have been popularized in commercial render-
ing software to simulate complex materials on synthetic objects, such
as skin and translucency [2, 3]. In volume rendering, layer-based rep-
resentations have been used to defer operations such as lighting and
classification. Ropinski et al. simulate the application of transfer func-
tions as a combination of individual layers, each generated by an in-

dividual transfer function [26]. Rautek et al. use a similar multi-layer
metaphor to combine different rendering styles [24]. Deferring the
compositing operation allows them to apply non-photorealistic shad-
ing effects, difficult to obtain directly in the volumetric space. Wu
and Qu use an optimization approach to synthesize images produced
by a transfer function resembling the visual result of combining indi-
vidual layers. [33]. Other types of layers have been obtained for clas-
sification purposes, such as the opacity [25] and feature peeling [13]
approaches. In their case, layers represent different regions where at-
tenuation is saturated. Therefore, by manipulating these layers, one
can extract different features in a view-dependent manner. Unlike the
previous approaches, peeling methods operate in 3D space.

Using layers to defer operations has been proven effective to cache
results [11, 1, 8] or certain volumetric properties along the view
rays [12], which can be later reused for efficient transfer function ex-
ploration. Srivastava et al. use a set of compressed runs of volume
data, an extension of layer based data that enables variable sampling
for fast transfer function exploration [29]. The use of compressed
samples and layer-based methods is even more effective for the ren-
dering of unstructured meshes, as demonstrated by Shareef et al. [28].
Tikhonova et al. propose a method for changing the color and opacity
mappings of volume rendered images, based on alpha estimation of a
given set of layers [30]. These methods, however, are view-dependent
and require re-compression or re-layering for new orientations. In
this paper, we provide a set of proxy representations that allows us
to unify different operations on volume data, such as transfer function
and view exploration. A more general image-based transfer function
design, as opposed to data-based approaches [20] was proposed by He
et al. and Mark et al [6, 15]. New views of a volume data set can be
obtained from a gallery of images, containing representative samples
from the space of combinations of opacity and color mappings. Both
approaches allow users to find good transfer functions, based on the
results of previous interactions. Most of these approaches, however,
require a large number of images to be useful for exploration. This pa-
per presents a novel approach, which produces proxy images, or com-
pact intermediate representations of volume data. Proxy images can be
used to inexpensively reconstruct volume rendered images from new
views, with new transfer functions, and with new lighting parameters.

3 FRAMEWORK FOR VOLUME VISUALIZATION BY PROXY

The traditional image-based rendering approaches use a large number
of volume rendered images to generate each new result. In our pro-
posed framework, we convert volume data into an intermediate repre-
sentation for interaction - proxy images. We defer the operations com-
monly used for interactive exploration of 3D data (view and transfer
function domain exploration, and relighiting) to our intermediate rep-
resentation. New images are then produced from proxy images, with-
out accessing the original 3D data. We describe the different proxy

representations below.

Fig. 2. Depth
proxy image.

3.1 Depth

The simplest proxy image is depth. Depth images
are commonly used for defering lighting compu-
tations, including complex non-photorealistic ef-
fects such as contours and silhouettes. It is pos-
sible to simulate the light bouncing off an isosur-
face using volume gradient as normal to that sur-
face. For a single viewpoint, the normals can also
be approximated from a depth image.

We extend the notion of depth proxy images
to multiple layers (or isosurfaces) of a volume.
Instead of a single depth map for an entire data set, we store depth
images for several intensity intervals. This allows us to simulate semi-
transparent rendering and lighting from different directions, empha-
size spatial relationships between different features, and apply such
complex operations as ambient occlusion with little computational
cost. Fig. 2 shows an example of a depth proxy image, where grayscale
represents the depth of a point with respect to the camera plane.




3.2 Multi-view Perspective

Depth images are computed for a single view-
point, limiting the degree of interaction. We ex-
tend them to multi-view perspective proxy im-
ages, thus enabling viewpoint changes for more
effective exploration.

The multi-view perspective proxy is an image
produced by our novel volume distortion camera
model. In addition to the samples visible from
the reference view, we store samples that would
only be visible from neighboring viewpoints - all
in a single proxy image. Similarly to depth proxy
images, we perform this operation for several layers. Fig. 3 shows an
example of a multi-view perspective proxy image, which shows parts
of an object (sides, top, and bottom) not visible in Fig. 2.

Fig. 3. Multi-view
perspective proxy
image.

3.3 Accumulated Attenuation

The proxy images defined above require users
to select particular isovalues for depth com-
putation. In volume rendering, we construct
images as the composition of semi-transparent
samples, rather than discrete surfaces. There-
fore, we present another type of a proxy image,
which stores the accumulated attenuation for a
number of intervals in the scalar field domain.
As described in Section 6, we can decompose
a volume-rendered image into multiple attenu-
ation images, each of them containing the to-
tal contribution to attenuation for each intensity interval. We discov-
ered that the color resulting from a change in opacity mapping can be
represented as a linear combination of attenuation. These linear pa-
rameters can be estimated using machine learning techniques. Fig. 4
shows an example set of attenuation proxy images, which appear as
semi-transparent layers. When combined, they reconstruct a volume-
rendered image that can be explored in transfer function space.

Fig. 4. Accumulated
attenuation  proxy
image.

4 VIEW EXPLORATION WITH MULTI-PERSPECTIVE PROXIES

Previous approaches to view synthesis interpolate multiple images, ob-
tained from different viewpoints. Such approaches suffer from the di-
minishing returns associated with rendering each additional image and
the number of non-overlapping samples. In our approach, we comprise
the information required to reconstruct multiple views into a single
proxy image. This is achieved in a pre-processing stage, using a novel
volume distortion camera model. At a later stage, we allow interactive
rotation of a volume data set with a fast view synthesis algorithm. The
algorithm is general and applies to both layer-based and attenuation-
based proxy images. These stages are described below.

4.1 Volume Distortion Camera Model

The volume distortion camera is a non-pinhole single-pole camera
with 3D radially distorted rays. In a traditional pinhole camera, an
image is obtained by compositing samples along rays emanating from
the eye position towards the image plane and into the volume. In our
new camera model, we first define a single polar point at the center of
an image, which defines a pole line in the view direction, to which all
rays converge. We define a ray from the camera plane towards the pole
line as follows. For an image pixel, we define a ray starting at a pixel
position in the camera plane pj, = (xp,yp,2p) and ending at E(p;,,) :

E(Pim):P6+V(‘VT(p[m7pe)‘+d(xp7yp))7 @

where v is the normalized view direction, p, is the eye position, and
d(x,y) = ||(x,y) — (x0,y0)|| is the distance from a pixel to the screen
center (xg,yo). This generates radially distorted rays, converging at
the pole, typically the screen center. This is depicted in Fig. 5 and
is similar to the occlusion camera, defined in [18]. In this paper, we
define a novel pipeline for the generation of distorted images and sub-
sequent view synthesis that applies to both layer-based and volumetric
semi-transparent objects.
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Fig. 5. Volume distortion vs. traditional pinhole camera model. (a) In a
traditional pinhole camera, rays are cast from the eye position towards
the image plane and into the volume. (b) In our camera, distorted rays
are cast from the image plane toward the pole line. We retain the dis-
tortion amount and depth as proxy images.

4.2 Generation of Multi-perspective Proxies

We obtain a multi-perspective object representation using our cam-
era model. Instead of compositing samples belonging to different iso-
surfaces into a single pixel, we store several multi-perspective proxy
images, corresponding to different isosurfaces. In addition to storing
depth, we store the distortion at each intersection point. The distortion
is found by computing the difference between the projected position of
a point in a pinhole camera (or orthographic projection) and the actual
point in the image plane. Let us define ¢ as the 3D intersection point
between a multi-perspective ray, emanating from p;;,, and a given iso-
surface. The projection of this point in a single perspective camera is
¢im- Therefore, the distortion ds for this point is:

ds = H‘Zim_PimH~ 2)

Note that a single value suffices, since we know that distortion is al-
ways applied radially towards the pole.

4.2.1 Fast Distortion on the GPU

We implement the generation of multi-perspective proxy images en-
tirely on the GPU. Unlike surface models, volume data does not in-
herently possess any shape. Therefore, explicit distortion approaches,
such as the one proposed by in [18], do not apply to volumes. Instead,
we exploit vertex shader capabilities to deform the bounding box of
a volume. Then, we walk through a volume in the fragment shader,
using radially distorted rays. Whenever we intersect an isosurface of
interest, we stop the traversal and output both the depth and distortion
of that point. The amount of distortion depends on the distance be-
tween the ray start position and the pole. Points further away from the
pole are distorted more than the points closer to the camera plane.

4.3 View Synthesis

We synthesize different views of a volume from multi-perspective
proxy images using undistortion. It extracts the 3D position of each
pixel in a proxy image and then re-projects it to a new 3D point. This
can be efficiently accomplished on the GPU, using vertex and frag-
ment shaders. For a given pixel in the multi-perspective proxy image
(x4,y4), we obtain the undistorted camera position (Xiy, Yim,Zim) as:

(xa,ya) — (x0,¥0)
ds. 3
Cavd)— ool 9

(Xim» Yim) = (Xa,¥a) — T

Zim = depth(xy,y,) is the depth stored in the proxy image. The point’s
new position is found by concatenating the inverse matrix from the
original viewpoint, and re-projecting back to the new viewpoint:

—1
(xnewvyneW7Znew) = MnewM()rig (xilnvyiinvzim)~ “4)

For a set of layer-based proxy images, this is done efficiently in the
vertex shader. Once we synthesize an image for a new viewpoint, we
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Fig. 6. Accuracy of view synthesis for three data sets. (a) Error plot as a function of angular deviation. (b-d). Radiality histograms (RH) as a metric
for predicting the quality of radial distortion. The actual amount of angular deviation for each feature is shown as an image (top).
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Fig. 7. Accumulated attenuation and distortion. (a) Accumulated at-
tenuation proxy images for skin, muscle, and bone, generated using a
multi-perspective camera. (b-d) New views, synthesized using volumet-
ric undistortion. Modifying the opacity mapping, we create novel views
of the bone and muscle layers.

output the new depth, which we subsequently use to apply lighting.
Several examples are shown in Fig. 1(a-b), where we show a number
of proxy images (bottom) and the synthesized results (top), simulating
different lighting parameters. The single-view depth proxy images,
shown in Fig. 1(b), are used to simulate diffuse lighting with specular
highlights. The multi-perspective proxy images, shown in Fig. 1(a),
are used to synthesize new views of a CT head from a different orien-
tation and to simulate proxy-based ambient occlusion at low cost. An
interactive example is shown in the accompanying video.

4.3.1 Volumetric View Synthesis

In many cases, it is desired to preserve the volumetric nature of a data
set (instead of a collection of overlapping layers) in the generated im-
ages. We adapt the multi-perspective camera to handle volumetric at-
tenuation as follows. Instead of storing depth for a number of isosur-
faces, we store the accumulated attenuation along the distorted rays for
a number of intensity intervals, as described in Section 6. To synthe-
size new views, we perform virtfual ray marching into a the bounding
box of a volume, along points p = s+V't, where s is the ray start posi-
tion (typically, intersection between the view direction and the bound-
ing box), v/ is the new view direction for the synthesized orientation,
and ¢ is a parameter along the ray. While marching, we keep track of
the effective distortion, computed as the distance: dsp = ||ITT (p—s)]|,
where IT is the normal of the camera plane of the original distorted
view. We use the projection p;,, = IT p to find the stored distortion in
the proxy image. If the current distortion is greater than the stored dis-
tortion, i.e. dsp > d(pin), we use the attenuation stored in the proxy
image and move to the next interval; otherwise, we continue march-
ing. This virtual marching is relatively inexpensive and effective for
synthesizing new views of volumetric objects, without storing large
3D textures in system or graphics memory. Fig. 7 shows the synthesis
of new views for a CT head data set and the change in opacity for one
intensity interval.

4.4 Evaluation

Figure 6(a) evaluates the accuracy of view synthesis as a function of
view rotation. We plot the correlation between the depth images gener-
ated from 3D data versus the depth images reconstructed from a multi-
view perspective proxy image for multiple angles. The angles range
from O to 60 degrees away from the original view. The figure shows
that the reconstruction for the original view is almost perfect (the cor-
relation coefficient is almost 1.0), and, as the angle increases, there is a
non-linear loss in accuracy. The synthetic blob data set is asymmetric
(while the CT head is symmetric). Thus, we observe a higher loss of
accuracy for the side that is less smooth. The car data set is another
example of an asymmetric data set (front vs. back). It also contains
many turbulent structures. Thus, the reconstruction accuracy is lower.

In Fig. 6(b-d), we demonstrate a new metric for measuring the ex-
pected quality of view synthesis, radiality histograms, for several data
sets. The quality of reconstruction depends on the frequency of high
curvature, i.e. it deteriorates when the normal at the intersection of a
distorted ray and an isosurface deviates significantly from the direc-
tion of a distorted ray. Radiality histograms measure the amount of
this deviation for the entire image. If most deviation is in the low end
of the spectrum, such as in Figure 6(b-c), the expected error of rotation
is low. If a histogram is skewed towards the high end of the spectrum,
such as in Fig. 6(d), the expected error of rotation is high.

5 RELIGHTING USING DEPTH PROXY IMAGES

Depth images can be used to simulate lighting effects. We can approx-
imate the normals of a surface from depth, up to an unknown scaling

factor, as n(x,y) = (‘?ﬁ , ‘;f 1), where Z(x,y) is the depth at that point.
We can use these normals to apply local illumination models as well
as proxy-based ambient occlusion. Fig. 1 shows a number of examples
for a CT head data set.

Single-perspective vs. Multi-perspective Relighting.  Unlike
previous normal-from-depth methods, we extend this idea to multi-
perspective cameras. In general, the normal computed from distorted
depth undergoes a non-linear transformation. It is given by the Jaco-
bian of the distortion, a matrix of partial derivatives of the distortion
with respect to depth, n’(x,y) = Jpn(x,y), where Jp is the Jacobian of
the distortion. Although this method retains 3D information implic-
itly encoded in the distorted image, the computation of the Jacobian
matrix requires extra per-pixel operations. As an alternative, we com-
pute the normal in two steps. First, we synthesize a depth image for
the new view, as described in the previous section. Then, we compute
lighting from the newly synthesized depth (an example is shown in
Fig. 1(a)). Fig. 8 shows the application of lighting parameters to a vol-
umetric blob, including specular highlights and proxy-based ambient
occlusion, while synthesizing new views.

Proxy-based Ambient Occlusion. Ambient occlusion is an ap-
proximation of full global illumination. It approximates the occlusion
of a point from a sampling of the neighboring space. For 3D volumes,
this is generally expensive without simplifications or the use of com-
plex data structures. Luft et al. [10] proposed an image-based method
that uses unsharp masking of a depth image to simulate similar ef-
fects. This method can be efficiently implemented using convolution;
however, the use of isotropic smoothing often results in exaggerated
shading at objects’ edges. With depth images, we can improve the
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Fig. 8. Relighting using multi-perspective proxy images for synthetic
blob dataset. (a) Multi-perspective proxy images. (b) Diffuse; (c) Diffuse
with specular highlights. (d) Proxy-based ambient occlusion. Results
are shown for three different views, synthesizing rotations of more than
45 degrees.

Fig. 9. Comparison of ambient occlusion methods. (a) 3D ambient
occlusion for an isosurface. (b) Our method, based on depth images
and anisotropic kernels. (c) Image-based method that uses unsharp
masking of the depth buffer [10]. Our method is better at retaining 3D
information, inferred from depth images.

results using an anisotropic kernel. The purpose of this kernel is to
approximate the neighborhood of a pixel as the projection of a hemi-
sphere, defined by the normal at that point. For a given point p, the
ambient occlusion is measured as:

T
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where ¢ denotes a point in a neighborhood of p, Z(p) is the depth at
point p, and dZ/dp is the 2D spatial derivative of depth. |-]o is a
clamping operation, that keeps the value greater than or equal to 0.
Results are shown in Fig. 9. We compare the ground truth 3D ambient
occlusion (a) with our approach (b), and the result obtained with un-
sharp masking (c). Our approach is better at retaining 3D information
inferred from depth images, as shown in regions below the chin and
collar bone.

6 TRANSFER FUNCTION DESIGN USING ATTENUATION
PROXY IMAGES

The approaches described in previous sections treat a volume as a col-
lection of semi-transparent isosurfaces, which can be combined for
multiple viewpoints and under different lighting conditions. For cer-
tain applications, such as flow visualization, it may be more informa-
tive to produce images via semi-transparent volume rendering. Thus,
it is critical to be able to manipulate the opacity values assigned to
specific intervals to bring out different features and structures in the
data. Previous solutions store a large collection of volume rendered
images, that encode different combinations of layers in a volume, and
simulate transfer function changes by synthesizing new images from
the available set. In our framework, the same capability is provided
using only two sets of proxy images. The first one consists of a collec-
tion of the accumulated attenuation proxy images for a finite number
of intensity intervals. The second proxy is a compact model, that maps
the most salient attenuation distributions to color. We use this model
to synthesize new images of a volume with various different opacity
mappings.

6.1 Accumulated Attenuation

According to the volume rendering integral [16], the color resulting
from compositing volume data is:

C= /ODC(t)T(t)dt , with T (1) = 1(t)e b 75)ds (6)

where C(t) is the radiance or color and 7T (¢) is the total attenuation of
a sample 7 along the view direction, defined in terms of the attenuation
coefficient (), typically an opacity mapping.

Subdividing the intensity domain into a finite number of intervals,
we obtain a distribution of attenuation for each pixel in the image. For
a given interval (/,4) in the intensity domain, the per-ray accumulated
attenuation is the combined contribution of all samples with an inten-
sity that falls within that interval:

M i
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where (i) is the opacity of a sample along the ray, V(i) is the scalar
intensity value at that point, and M is the number of samples along the
ray.

This approximation becomes more useful as we increase the num-
ber of intensity intervals. In the worst case, each interval represents
a single intensity value. However, we show that even a small number
of intervals, say 16-32, allows us to defer the composition operation
for exploration in transfer function space. In our previous work [31],
we propose a similar method. We re-composite the attenuation dis-
tributions (instead of the original samples) to synthesize new images,
using different opacity and color mappings. However, this approach is
limited to volumes containing nested isosurfaces with few overlapping
structures. It also assumes a monotonically increasing relationship be-
tween the opacity and intensity mappings. In this paper, we propose a
different compositing method, that produces superior results and can
be applied to arbitrary intensity distributions. This novel method uses
inexpensive machine learning techniques to predict color, based on the
distribution of attenuation, as described in the following section.

6.2 Attenuation Clustering and Model Learning

In Eq.6, the final color of a volume rendered image is a combination
of the attenuation of all samples along the ray. Therefore, one can
think of the volume rendering integral as a mapping from attenuation
distributions to color. To simplify our discussion, let us define the
color of a pixel as a tuple c3x and the attenuation distribution as a
tuple ay x 1, where L is the number of intervals in the intensity domain.
Then, the volume rendering integral can be defined as a function f :
R — R3, so that ¢ = f(a). Using its first order Taylor expansion, we
can approximate this equation as:

c~ f(ag) +Jf(a—ag) = co+Js(a—ap) ®)

for a given attenuation distribution ag, corresponding to color c¢g, and
where J is the Jacobian of the transformation, a 3 x L matrix contain-
ing the partial derivatives of the attenuation distribution with respect
to the color components. We use RGB color space, but different color
spaces may be used as well. This equation is a general mechanism for
predicting color ¢, corresponding to any given attenuation distribution
a, as a linear variation from a representative color-attenuation tuple
(co,ap) (as long as we can find good estimates for ¢, ag, and Jy). If
we represent all the attenuations in a set of images with a few key col-
ors and attenuation distributions, the remaining combinations can be
approximated using this linear approximation. The quality inherently
depends on the number of representative colors and attenuation distri-
butions. To find a good set of representative colors and attenuations,
we employ a clustering approach. Our process is shown in Fig. 11. We
now describe it in a series of steps:

1. Store the attenuation and color for each pixel in a small set of
input volume rendered images (typically three or four).



(b) Reconstructed

(a) Clustering

(c) Ground Truth

(d) Reconstructed (e) Ground Truth

Fig. 10. Transfer function design based on attenuation clustering for a fire simulation of a methane pool. (a) Extracted clusters for a given transfer
function. Color is based on the color of each attenuation centroid. (b) Image reconstructed from our prediction model. (c) Ground-truth volume
rendered image. (d) Synthesized image with modified opacity, that brings out inner structures. Compare to (e), the ground truth image for that
opacity setting. Our approach correctly attenuates color in regions where red isosurfaces are no longer present.
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Fig. 11.  Transfer function exploration using model learning. Pre-
processing stage (top): we compute attenuation distributions «a for each
pixel and cluster them into groups. For each cluster, we find the linear
projection J that relates color and attenuation and store these values in
a table. Interactive stage (bottom): the user explores different transfer
functions, which modify the attenuation distributions. We search the ta-
ble for the closest distribution to the new attenuation distribution a 7 and
use the linear model to find the corresponding color.

2. Cluster the attenuation distributions based on Euclidean distance
or another suitable metric. In our work, we apply k-means al-
gorithm on the distributions. Each of the resulting clusters has a
corresponding representative color from an input image, defined
as the color corresponding to the cluster’s centroid. Fig. 10(a)
shows an example clustering result for the rendering of a fire
simulation, using just K = 24 centroids. The colors indicate the
color associated with the cluster’s centroid.

3. For each cluster, we fit a linear model to find the 3 x L parameters
of the transformation J . Assuming that each color component is
independent, we find it by solving the over-constrained problem
for each column i € 1,2,3 of Jy:

ap—aop . ¢1—¢co

W= . ©)
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for n pixels in the training image, where cg,aq are the color

and attenuation of a centroid. Since we use a small number of

clusters (K = 24) and a small number of attenuation intervals

(L = 16), this operation is inexpensive.

4. The result is stored as a look-up table of size ((3+1)L+3) x K,
consisting of a 3 x L Jacobian matrix (J), the centroid distribu-
tion a;, and color ¢; for each cluster i,i € {1,2,...,K}. In our
experiments, we use a clustering of K = 24 clusters for L = 16
intervals. The resulting transfer function proxy is of size 67 x 24.

Fig. 10(b) demonstrates the clustering results for a fire simulation.
From a few clusters (24), we can represent the colors of volume ren-
dering based on the variation of accumulated attenuation with respect
to each cluster’s centroid. Compare to the ground truth volume ren-
dered image in 10(c) (which requires access to 3D data). As can be
seen, the difference is imperceptible.

6.3 Opacity Changes

The above approach allows us to simulate opacity changes using only
proxy images. There are three steps involved in this operation:

1. We approximate the resulting accumulated attenuation o’ after
an opacity change. This can be accomplished by estimating the
change in attenuation, based on a change in opacity for a given
intensity interval. Then, we propagate attenuation to the rest of
the intervals, using the approach in [31].

2. We find the nearest cluster centroid to the resulting attenuation
distribution. This search gives us the centroid color ¢y, attenua-

tion distribution a; and Jacobian J;f), so that :

lag —d|| < |la; —d'||Vie {1,2,....K}. (10)
3. Finally, we use Eq.8 to find the resulting color ¢’ that corresponds
to the new accumulated attenuation.

Fig. 10 shows the result for the fire simulation after simulating an
opacity change. In this case, we simulate an opacity change that re-
moves several isosurfaces (in red) to bring out the regions of high
temperature (yellow and orange). Notice that we can almost exactly
reproduce the volume rendered result shown in Fig. 10(e). The re-
sulting color is accurately reproduced, even for the regions that were
previously occluded by the red features.

Another example is shown in Fig. 12. We use two training images
of a supernova entropy simulation (a-b) and show the reconstruction
of an opacity function not present in the training set, while increasing
the number of clusters. We observe that a single cluster still shows the
main distribution of colors as a single linear fit, but it cannot capture
the correct compositing (c). Adding a few images might result in un-
desired color quantization (d). For this example, 48 clusters capture
the color distribution accurately (d), as compared to the ground truth
image (e).

6.4 Evaluation

To understand the sources of error in our approximation, we measure
the accuracy of reconstruction as pixel-wise difference between the re-
constructed and ground truth images. Fig. 13 summarizes the results
as error plots for three representative data sets: smooth vorticity, tur-
bulent supernova flow simulation, and CT head. Each image shows



(a) Training Image (b) Training Image

(c) Reconstructed K=1 (d) Reconstructed K=8 (e) Reconstructed K=48

(f) Ground Truth

Fig. 12. Transfer function exploration of the entropy field of a supernova simulation. (a-b) Training images. (c-e) Predicted result for a different
attenuation distribution for K = 1,8, and 48 clusters. A single cluster misrepresents the compositing of different intervals. 8 clusters does a better
job, but quantizes some colors due to suboptimal clustering. 48 clusters results in an accurate prediction, as compared to the ground truth (f).

Training Set 1 ==Training Set 2

Training Set 3

0.01

0.001

0.0001

0.0001

(a) Smooth Vorticity

(b) Turbulent Flow

0.01

0.001

0.0001

(c) CT Scan

Fig. 13. Accuracy of prediction model from attenuation. Each plot shows the sum of squared pixel differences (SSD) between the predicted and
the ground truth images for several types of data sets using three training sets. On top of each plot, we show one of the training images and the
accumulated error using a radiance heat map for training set 1 (middle) and training set 3 (right). (a) For smooth vorticity, the error is low. In some
cases, adding more training images results in an order of magnitude improvement. (b) The improvement is not so dramatic for a turbulent flow. (c)
A different pattern occurs for CT data sets, due to different attenuation distributions.

the pixel error as the sum of square differences (SSD) on a logarith-
mic scale. The x axis represents different observations, where we pro-
gressively modify the opacity function to make inner structures more
visible. We perform this experiment for three training sets, with 1,2,
and 3 training images, respectively. We observe a different pattern for
flow and CT data sets. For flow, the error seems to diverge and im-
prove dramatically as we increase the number of training images. For
smooth vorticity, each added image results in an order of magnitude
of improvement. The behavior is not as obvious for the supernova
flow simulation, due to the presence of turbulent structures. In some
cases, adding more images seems to decrease accuracy, when the func-
tion cannot be approximated linearly, and the linear fit only increases
the amount of error. For the CT head, however, we see a rather uni-
form change. This suggests a different attenuation distribution. Each
figure includes error images, obtained as the accumulation of pixel
differences for all test images, using a radiant heat color map (black
indicates less error, yellow to white - more error). We observe that for
a small number of training images, the error is quite large and accu-
mulates in regions of overlap (middle image), while for training set 3
(right), the error becomes almost imperceptible.

6.5 Depth-aware Enhancement

A close inspection of our color prediction model reveals that it can-
not correctly predict colors if there is a lighting model, since lighting
changes colors in ways not related to attenuation. Lighting is still de-
sired to enhance shape. We can simulate lighting by combining accu-
mulated attenuation proxy images with depth proxy images, generated
for each interval (example shown in Fig. 1(d)), at the cost of increas-
ing the number of proxy images. Another option is to approximate
the effects of lighting by enhancing the salient regions of a volume,
based on their gradient. Although a non-realistic shading method, this
effect highlights shapes that cannot be seen even with lighting models.
Moreover, this enhancement can be applied inexpensively as a mod-

ulation of color, based on the gradient of the attenuation distribution.
Because attenuation implicitly encodes depth, the result is a depth-
aware enhancement of volumetric edges. To achieve this, we apply
an enhancement factor p to the output color, defined as the Euclidean
norm of the spatial derivatives of the attenuation distribution:

L Ja; da; Y
Cenhanced = 1—p)c,wherep =27 2 7’7 2 , (11
et = (1P P (io” ox’ dy ] )

where L is the number of intensity intervals, a; is the accumulated at-
tenuation for the interval i, || - || is the Euclidean norm of a vector, and
A and 7 are constants that control the strength and contrast of the en-
hancement, respectively. Fig. 14 shows two examples of enhancement
for a supernova simulation and a CT wrist data set. For the supernova
dataset, we are interested in visualizing inner core forces. Thus, we
render the isosurfaces of interest with low opacity, which makes it dif-
ficult to identify certain regions, even with 3D lighting. The enhance-
ment is able to bring out some of the structures, for example, the jet of
entropy from the core to the outer layers (inset on left). The same jet
is difficult to see with lighting. It is also incorrectly highlighted, if we
simply enhance the edges of the resulting image. Using image-based
edge enhancement, although similar to our technique, does not pre-
serve the depth relationships between nested structures and is, there-
fore, misleading. For the wrist CT data set, enhancement proves ef-
fective for diagnosing illnesses. In this case, radiologists are searching
for erosions in the bone, as a symptom of cancer. Some of the super-
ficial erosions, indicators of early symptoms, are difficult to see with
lighting. Image-based edge enhancement, on the other hand, fuses
bone edges together and highlights noisy structures. Our depth-aware
enhancement highlights these erosions. We observe that, for certain
tasks, enhancement based on attenuation is equally as or even more
effective than more expensive lighting computations.



(c) Volumetric Lightin
Fig. 14. Enhancement examples for supernova simulation and wrist CT
data sets. For the supernova data set, fine structures cannot be seen
even with lighting, while image-based edge enhancement shows incor-
rect depth relationships between layers (one structure appears incor-

rectly behind the core). For the wrist data set, only highlighting shows
fine erosions in the bone, indicator of the presence of a carcinogenic.

7 DISCUSSION AND LIMITATIONS

In this paper, we show a number of results that can be obtained with
our framework. We evaluate the accuracy of our approach via a visual
comparison and a quantitative analysis, but an utility assessment re-
quires a full deployment of our framework in a working system. We
believe this deployment can be performed with relative ease. Our ap-
proach, except for pre-processing of attenuation, is fully implemented
on the GPU, using vertex and fragment shaders. Since most operations
in our framework are performed on 2D images, they are usually faster
than volume rendering. The performance of our methods depends on
several factors: N, the dimensions of a volume, M, the dimensions of a
2D image, and k, the number of layers. Fig. 15(a) compares the space
requirements for traditional and proxy-based rendering. We compare
storage requirements for multiple volume sizes and for different num-
bers and sizes of proxy images. In the worst case, assuming that the
number of layers grows linearly with N (say a tenth of the dimensions
of a volume), using proxies is still more efficient than the original vol-
ume data. This is depicted in Fig. 15(b), where we show the relative
cost of these metrics as we increase N and k, while keeping M constant
(5122). For small volumes, naturally, performing complex operations
on a 2D image may be as costly as performing them in 3D space.
However, as the size of data sets increases, we expect a more signif-

icant benefit. In most cases, as demonstrated in this paper, k can be
kept constant, as a small number of layers, typically 16.

Our framework offers unprecedented capabilities for synthesizing
new views of volume data for different orientations, opacity mappings,
and relighting parameters. We now discuss some of the design aspects
and limitations of our approach.

Approximation. Images, synthesized using our approach, are an
approximation. We envision our framework used as an exploratory
technique, mainly for interactively selecting views and transfer func-
tions, useful for identifying or discovering patterns of interest. When
the user is satisfied with the chosen parameters, the system can pro-
duce an accurate volume rendered image. However, some tasks, that
take advantage of volume rendering, do not depend on a faithful repre-
sentation of data. For example, diagnoses of illnesses often use judge-
ments about the relative size of features. In many cases, this implies
data filtering, such as filtering out unimportant or noisy structures.

Selection of Proxy Images. Although desirable, fully automated
selection of layers and attenuation intervals is, in general, not possi-
ble. However, layer-based lighting and view synthesis are independent
of the particular strategy used in selecting representative isovalues. In
general, this selection is user-defined and task-dependent, akin to se-
lecting a good transfer function. In this paper, the depth layers corre-
spond to the opacity peaks in a user-defined opacity function and the
intensity domain is subdivided into uniform ranges. We plan to ex-
periment with adaptive interval sizes, which will allow us to take into
account the actual distribution of data along each ray. There is also
trade-off between the quality and amount of detail that can be encoded
in the accumulated attenuation proxy images and the size of the vol-
ume representation. Our results demonstrate that we can achieve ac-
ceptable results even with a relatively small number of intervals. The
number of layers is also application-dependent, but a general strategy
is to select as many layers as needed to highlight the features of inter-
est. Because users can explore the data in transfer function space, the
opacity of less important layers can be reduced or they can be removed
entirely. Thus, pessimistic strategies, where more layers are computed
than needed, do not pose a limitation to our approach, except for the
cost associated with storing extra images.

Single Pole Distortion. Our volumetric multi-perspective camera
is restricted to single pole distortion. This prevents the user from ex-
ploring certain complex data sets with inter-occlusion between multi-
ple features. We plan to extend our approach to multi-pole distortion.
Similar volumetric reconstructions, although costlier, can be provided.

Rotation Error. We limit view synthesis to a single distortion im-
age, thus there is considerable error in the results for large angles of
rotation. As mentioned in Section 4.4, the error is due to curvature. We
evaluate the effects of curvature in Fig. 6. We believe the error can be
alleviated by incorporating additional multi-perspective images, gen-
erated from different viewpoints, into the view synthesis algorithm.

Number of Training Images. Our color prediction model uses
training images to learn the relationship between attenuation and color.
Combinations not present in the training images may be underrepre-
sented and poorly predicted; for example, when a feature is completely
occluded. Therefore, we need to enhance our approach with a smart
(instead of ad hoc) selection of training images.

Linear Relationship Assumption. Another limitation is that the
linear relationship applies correctly only to accumulated attenuation.
Therefore, we cannot use the same model for different compositing
strategies, such as additive blending or maximum intensity projection.
The development of these models is currently under study.

8 CONCLUSION

We introduce a novel framework for visualizing volume data that en-
ables deferred interactive exploration, without accessing the original
3D data. We unify a number of operations, including transfer function
design, relighting, and viewpoint exploration, as a set of operations on
compact representations, called proxy images. For the purpose of data
exploration, perceptual and technological limitations make it difficult
to provide interactivity, while requiring full access to volume data. We
believe that our framework is the first complete solution to the prob-
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Fig. 15. Cost Evaluation. (a) Space requirements for traditional and
proxy-based rendering. We compare storage requirements for volume
sizes 1283-4096° versus storing & (k range: 4-44) proxy images of sizes
5122, 1024%, and 2048,. (b) Cost comparison for (1) 3D volume ren-
dering, (2) proxy-based compositing, (3) multi-perspective compositing,
(4) 3D ambient occlusion, (5) proxy-based ambient occlusion. This is a
pessimistic case, where k is 1—‘0 x volume size and proxy image size is
constant (5122). Typically, k is constant, as in (a).

lem of deferring interaction via more compact intermediate represen-
tations. It can be efficiently deployed in remote settings, where the
server computes proxy representations, while thin clients reproduce
complex rendering effects at low cost. It is also an attractive solution
to in-situ visualization, due to the low cost of computing proxies. Their
generation can be interleaved with the simulation calculations, with-
out a significant amount of additional computation cost. Some com-
plex operations, such as multi-perspective distortion and attenuation
clustering, can be computed in real-time, using modern GPUs. We en-
vision that our framework for visualization by proxy can be extended
for other types of operations or domains beyond volume rendering.
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