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Abstract— The visualization of complex 3D images remains a challenge, a fact that is magnified by the difficulty to classify or
segment volume data. In this paper, we introduce size-based transfer functions, which map the local scale of features to color and
opacity. Features in a data set with similar or identical scalar values can be classified based on their relative size. We achieve
this with the use of scale fields, which are 3D fields that represent the relative size of the local feature at each voxel. We present
a mechanism for obtaining these scale fields at interactive rates, through a continuous scale-space analysis and a set of detection
filters. Through a number of examples, we show that size-based transfer functions can improve classification and enhance volume
rendering techniques, such as maximum intensity projection. The ability to classify objects based on local size at interactive rates
proves to be a powerful method for complex data exploration.

Index Terms—Transfer Functions, Interactive Visualization, Volume Rendering, Scale Space, GPU Techniques.

<+

1 INTRODUCTION

One of the challenges visualizing volumetric data sets is the renderifigt size, analogous to density in a volume data set, should be con-
of features of interest so that they stand out from the inherent noi@uous. This is a natural assumption, since features usually exhibit
and other less interesting features, which may occlude or add clgpatial coherence. For example, the color mapping used to classify
ter. A number of approaches have been proposed to deal with tHi¢ aneurysm in Fig.1(middle) shows subtle changes in the width of
problem, including rendering operations, segmentation and manighe vessels, which otherwise would be classified identically. With our
lation techniques. Despite the proliferation of rendering and manippproach, we can now see these small variations in size, while still
ulation techniques, the use of transfer functions is still the predomMisualizing global differences between large and small features.
nant method. Transfer functions map scalar data values at each samFhis continuous representation of size is achieved satie fields
ple point to color and opacity. In many cases, first and second ordehich are scalar fields where every voxel represents the local scale o
derivatives of the scalar field are used to improve classification or adize of the feature containing that voxel. This idea contrasts with pre-
lighting to volume rendered data [14, 8]. In other cases, it is possiblet®us approaches to multi-scale analysis, which enhance classification
incorporate geometric or semantic information when applying transfer segmentation using a pyramid representation of a volume. Pyramids
functions, such as spatial coordinates, curvature, spatial freguenc often result in discrete — and usually disperse — representation of scale,
user-defined tags. Some of these result in a multi-dimensional traasd they seldom offer the possibility to detect small variations in size.
fer function space, and require efficient manipulation mechanismslttstead, we derive a methodology for computing scale fields based
be properly deployed in visualization systems. In this paper, we pron continuous scale-space theory and a set of scale detection filters.
pose a new dimension to define transfer functions: the relataenf  Scale-space theory was introduced by the computer vision community
features. Size, understood as the magnitude of the spatial extents tif analyze and process 2D images [15, 33], and has been widely used
given part of a volume, is an intuitive concept that can be manipulatéar diffusion-based smoothing of 3D volumes. In this paper, we show
more easily than high-dimensional values. how diffusion mechanisms can be derived to improve scale selection,
With size-based transfer functions (SBTF), itis now possible to m&@nd how this information can be used to build a scale field. Unlike
color and opacities based on the relative size of features. For exampkgvious attempts for scale-space analysis of a volume, which were
detection of aneurysms requires the visualization of convoluted vasénostly applied as off-line operations due to its computational cost,
lar structures. Large and small features alike often appear with similur methodology allows the user to manipulate the parameters inter-
or identical density in MR imaging or angiography. If we incorporat@ctively, which proves to be a powerful mechanism for visualizing and
size to derive a transfer function, large parts, such as an aneurgsm, exploring the complex structure of data volumes.
be mapped to different color and opacities than the normal vessels. An
example is shown in Fig. 1. Note how the aneurysm is clearly marked Rg_ATED WORK
in a different way than small vessels. In other cases, small featteesa . . .
also important. For example, the detection of cancer cells requires {R@SPite the fact that volume rendering has become a commodity, trans-
analysis of small features on a mammograph, including veins, arterf8§ function design is still a challenge. Many methods have been pro-
and cancer tumors. The ability to visualize the relative size of featurB@Sed to that end, which can be broadly classified as image-centric and
enhances the presence of these cells over other larger structuresdag-centric [22]. Our work follows a data-centric approach, where a
similar need exists for detecting pores and cracks for non-destructi/@nsfer function is derived by analyzing the volume data. The pre-
testing in industrial CT. With a size-based transfer function, it is noflominant approach derives a 1D transfer function based on seéar d
possible to highlight sizes of interest. values. Some have proposed higher-dimensional transfer functions
One of the desired properties of a size-based transfer function?@S€d on first and second order derivatives of a volume, i.edj-gra
ent information [14, 8] and curvature [6, 9]. These ideas have been
extended to include rendering parameters, leading to lighting transfer
functions [17] and illustration-inspired operators [23, 1]. Manual de-
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jishiro et al. [4] and Takahashi et al. [27] extract topological struc-
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Fig. 1. Size-based classification of an aneurysm (250x 250x 125). (Left) 1D transfer function based on scalar value. (Middle) Size-based classifi-
cation, where size maps to color and scalar value to opacity. (Right) Size-based classification, where opacity is the product of opacity mappings
from both scalar value and size, in this case emphasizing larger features. Color mapping is same as (left).

tures to derive transfer functions, while Correa and Silver use curva-continuous N-dimensional signl RN — R, its linear continuous
skeletons to define transfer functions along features [3]. Huang aschle space representation is a family of sighal® x R, — Rthat
Ma use partial region growing to facilitate the generation of transfeatisfy the diffusion equation:
functions [7]. Enhancing transfer functions with computed or acquired
values often results in an even more complex feature space. For this aL = }DZL 1)
reason, we propose a new definition of transfer functions that maps 2
the local size of features to color and opacity. Unlike other complex.
spaces, size can be defined in a single dimension and it complem
easily traditional transfer functions.

Our methodology for extracting size is based on scale-space a 1 2
ysis. Scale-space theory is a framework for multi-scale analysis of g(x;t) = o€ 2 2
images, developed by the image processing community [11, 15, 33;1. )
At the core of this framework is the realization of a multi-scale repreLNe parametet is therefore referred to as trezale parameterand
sentation of images that exhibits certain axiomatic principles about {ft€ linear scale-space representation of the signal can be computed via
unigqueness and invariant properties. The most common is the lin&€gpvolution:
scale space, obtained with progressive Gaussian smoothing. Applica- L(x;t) =g(x,t)* f(x) ®3)
tions abound, including diffusion [30, 21], feature detection and auto- Thjs result comes from the assumption that Gaussian smoothing is
matic scale selection [16]. The study of scale-space in visualizatigfe only filter that satisfies “reasonable” axioms for scale space. These
has been limited, partly due to the increased computational complexioms include linearity, isotropy, shift and scale invariance, and non-
ity of 3D volumes. Previous alternatives to represent the scales Of@ation and non-enhancement of local extrema [15]. Some of these
volume used Laplacian pyramids [5] or Wavelet transforms [20, 3Zxjoms have been relaxed, which has led to nonlinear and anisotropic
Westermann and Ertl [32] use a hierarchical multiscale representatigey e spaces [30]. One of the most important axioms, which is the ba-
to enhance structures such as edges and improve volume renderiigof scale detection, is that local extrema in scale space should not be
Vincken et al. [29] and Lum et al. [18] use pyramid representationgeated or enhanced as the scale parameter grows. In other werds, n
to improve volume classification. These techniques refine the classifiye| surfaces are not created as we increase the scale paraméter. |
cation of a given voxel based on its behavior across the scales in {§owing section, we describe how some of these axioms translate in

pyramid. Pyramid approaches, however, subsample the data in b@ifjrable properties of our methodology for extracting local size.
space and scale. Here, we use continuous scale-space to derive high

quality scale mapswhich are used to classify along a single dimen3.1 Feature Detectors in Scale Space

sion, size orthogonal to scalar value. This property not only a”OWi_i_ndeberg noted that feature detectors can be obtained by looking at
to define transfer functions based on size, but also improves classiis pehavior of the derivatives of the scale space along the scale di-
cation. Continuous scale-space analysis has been used to detectgldsion [16]. This has been widely exploited to extract edges, ridges,
enhance vascular structures in medical images [19, 12], in segmgsps and corners from 2D images. In our approach, we are intdreste
tation [26], and shape detection [25]. In the latter, multiscale filtef§ getecting blobs as Laplacian maxima in both scale and space. The
help detect features of varying shape, such as sheets, lines and blgpgie 4t which the blob is detected, i.e., thgarameter, is the repre-
and allows them to design transfer functions based on shape. 13¢gative scale of the blob. This means that a Gaussian blob ofwidth
similar fashion, we derive filters to detect size and use it as an exyaq centered around the detected point, can be used to “describe” both
dimension in transfer function design. In that sense, our approachyig, sijze and location of the structure of the image at that location.
complementary to that of Sato et al [25]. In this paper, we propose agcaje-space representations are intrinsically different than pyramid
novel formulation of nonlinear diffusion that improves scale detecuo'i‘epresentations. Pyramids are constructed by subsampling in both
and a mechanism.to create a continuous representation of scale bagegh ang space. Due to the the space subsampling, it is difficult to ac-
on scattered data interpolation. curately locate Laplacian maxima for higher scales. Due to scale sub-
sampling, maxima points can only detected at discrete scales, which
are usually small compared to a uniform discretization of the scale-
Continuous scale space is a framework developed by the compwgpace. Fig.2 plots the response of the scale detection filter for two
vision community to analyze the multi-scale nature of data. Givatifferent points. On the left, the maximum is detected at scale 40.

{h initial condition L(x;0) = f(x). It has been shown that the solu-
Ion to this equation is given by Gaussian smoothing of the signal with
Jarnels of size:

3 CONTINUOUS SCALE SPACE
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Fig. 2. Comparison of continuous scale-space vs. pyramids for scale
selection. We plot the response of a scale detection filter for two points
along multiple scales. Maximum points (circled) represent the intrinsic
scale of the voxel. In the left, a pyramid representation (dashed line)

incorrectly detects a maximum at scale 32, where it should be at scale

40. In the right, the pyramid results in a monotonically increasing curve

and no maximum is detected, where it should be detected at scale 48.

However, if we use a pyramid (dashed line), the maximum appears SCALE FIELD SCALE ABSTRACTION

to be at scale 32, due to the poor sampling of higher scales. On the

right, the maximum detected at scale 48 is not detected at all usingig. 3. Overview of the process of obtaining scale fields.

pyramid, which seems to grow monotonically. A continuous approxi- ) » . )

mation can be built from pyramids, assuming a reconstruction mod#éhereC is a conductivity function. For the linear case, the conduc-

at the cost of computational complexity. tivity is constant and it is equal to 1. Perona and Malik introduced a
Scale-space representations, on the contrary, can be tuned to dét@gtlinear conductivity function based on gradient magnitude, which

scales at varying degrees of granularity. This gives us the possibilityREeServes edges [21],

create scale fields with varying degrees of precision, as described in the

. . 2
following sections. Later on, we compare the result of our approach c(J|oL|)) = At (6)
: : : 2 2
based on continuous scale-space vs. a pyramid representation. A2+ |00
4 SCALE FIELD whereA is a sensitivity parameter. A% grows,C approaches 1 and

) ) ) ) ) the result is linear diffusion. This function favors large regions with
The first step towards applying size-based transfer functions is the ggrtain degree of homogeneity and preserves edges.
timation of a 3D scalar field to encode size information, called the \when we consider variable conductivity for the diffusion problem,

scale field The scale field is a mappir§y R™ — R, such thaS(x) =t it pecomes equivalent to solving the non-linear diffusion equation,
represents the local scale of the feature containing the gole can

define this field more formally as the fitting of a continuous functon 1

to a set of pointgx;;ti }, such tha§(x;) =t;, and it exhibits certain de- GL= ED -COOHL @)

gree of continuity, wheréx;;tj} C L represent the most salient points__ . ) ) .

in scale-space, according to a given detection filter. The processéHS Problem, however, is known to be ill-posed in the continuous case

computing scale fields can then be decomposed into several stepgifgbrequires regularization factors [2]. Weickert also noted that, in the

depicted in Fig.3: discrete case, a finite difference discretization acts as a regularizer and
Scale-space computation, which generates a multi-scale repre_stable rgsults can be obtained for certain vaIueStqtyplcally <1). .

sentation of the 3D image, given an interval of “interesting scaleMternatively, Weickert suggests to define conductivity as a tensor in-

[tmin, tma- steaq .of a sca}lar [30]. We derive our own variation of r_10n-I|near con-
Scale detection, which outputs a set of point; i}, which we ductivity that improves scale detection, as described in the following

refer to as thescale abstractiomf the 3D image, and finally section. o , _
Backprojection, which fits a continuous function — the scale field The user can control the diffusion process with two parameters: the

_ to the scale abstraction. number of iterations of Eq.4 and the scale sampling distarnite

p@se parameters indicate the minimum and maximum sizes that can

These steps are described in the following section. Because we% etected. O i te th lecti fth :
interested in generating scale fields for the visualization of discrete etected. Une can automate the selection of the parameters, assum-
the user wants to detect all possible sizes, by settiagDim/At,

images, we derive its computation for the discrete case. Therefore, W P - . o ;
use the termscale fieldanddiscrete scale fiel§which is a discretiza- wr e_reDlmdlstthet dk;rlnens'onsgthe voll#me. Selttllsh'ga_l de]im_es the b
tion of a continuousscale field) interchangeably, unless specificall '?'mtug]be e(;tf"" ;esmle as the size of a voxel. Sub-voxel sizes can be
noted. We assume that the discretization occurs in a regular grid. etected by settingt < 1.

4.2 Scale Detection

4.1 Scale-space Computation L .

] A number of detection filters can be obtained from the scale-space of
Instead of costly convolution, we compute the scale space of a dataggblume by looking at the first and second derivatives. In particular,
iteratively, using forward Euler integration of the diffusion equatiofh|obs can be detected at multiple scales whenever the normalized sec-

(Eg. 1). Using a discretization stencil around a given point (typicallyng derivatived2L assumes a local maxima. This is obtained as the
a 6-, 18- or 26-point neighborhood), we compute the representationgrmalized Laplacian,

a scald + At iteratively,
t0%L = t(Lux+ Lyy+ Lzz) = tTr(H(x 8
L(x;t+At) = L(x;t) + At Qi P(L(Xjjk:t) —L(x;t))  (4) (boct Lyy+Lz2) (HG)) ®
ijkeN whereH (x) is the Hessian matrix at a poirt The set of these points
which are maxima in both space and scale — here denoted as Laplacian
whereN is a set of indices that point to the neighbors of a given poirf Gaussian (LoG) extrema — together with the scale paranheter
X, jjk are normalizing coefficients, arigx;0) is the original image. which they were found, constitute tlseale abstractiorof the data
® is a flow function, set. Fig.3 shows the scale abstraction for an aneurysm data set where
P(x) = x-C(x) (5) spheres are used to indicate the location and size of the detected blobs.



Fig. 4. Pyramid vs. Scale-space. On the left, scale maps constructed
from a pyramid exhibit poor granularity of the scales and poor localiza- (a) Original (b) Intensity (c) Gaussian (d) S&P
tion. Note the discrepancy between the largest scale (red circle) and
the aneurism. On the right, scale map based on our approach leads
to a continuous representation of scale with better localization. The
aneurism is correctly detected as the largest feature.

Fig. 5. Robustness to intensity variation and noise. (a) Original data

set consisting of spheres of random size, (b) intensity variation (no-

tice the change in opacity and color), (c) Gaussian and (d) Salt-and-

pepper noise. Bottom: Size-based classification. Color is mapped to
Using linear diffusion to detect scales may result in two or morsize so that blue and white indicate smallest features, while yellow and

nearby objects merging in a single blob before they are detectedres larger sizes. Classification is robust to both intensity variation and

individual features. In such cases, the scale maxima are not looabise. Modulating the opacity based on size, so that smallest features

ized accurately. For this reason, we seek to develop a filter that favars more transparent, results in noise suppression.

diffusion in regions of a given homogeneity, but prevents diffusion o

over edges. The original Perona-Malik filter does not seem of interés8 Backprojection

since diffusion stops at the edges. This generates a lot of false ma@ike previous stage outputs a set of discrete points that represent the

ima responses that need to be pruned. Instead, we want to controlrifest salient scales of the volume. For a continuous and smooth trans-

direction of diffusion, so that it only crosses boundaries in the dire¢er function, we need to fit a continuous representation. One option is

tion towards the medial axis of a feature. In our discretization stencib define a local descriptor as the maximum response of the normal-

this can be achieved by considering the signed forward differencesizsd LoG at every single voxel. This, however, does not result in an

an approximation of the gradient, instead of using the unsigned graitituitive representation of size, since this function decreases for voxels

ent magnitude. Assuming the discretization in Eq.(4), we construcaavay from the LoG extrema. Instead, it is reasonable to assume that

different conductivity function, all voxels within a radius of a LoG extremgx;t), can be described
with a sizet.
A2 > L(Xijk) —L(X) >0 Because these blobs may intersect, we must fit a scale so that
C(L(xijk) —L(x)) = {/\2+(L<xi;k)L(X>) o (9) it exhibits certain degree of continuity. This can be accomplished
1 otherwise with scattered data interpolation. A fast method can be obtained

with Shepard’s interpolation. Given a scattered set of LoG extrema

where) is a sensitivity parameter controlled by the user to define pob.= {(xi;ti)}, the scale fiel&s can be obtained as

sible boundaries between features. Small valdes (0.01,0.1)) lead

to better localized scale maxima (useful for convoluted structures), S(x) = ZNG(HX_XiH)ti (10)
while large valuesX > 1) makes diffusion linear. Although it results Xi€

in slight deviations of the scale maxima, it is in general more robust\t%eree(d) is a basis function. Common basis functions are Gaussian

noise. The effect of our filter is similar to that of progressively applyl'(ernels and Wendland polynomials [31]. In our approach, we use the

ing smoothing anerosionfilters. fourth degree Wendland polynomial, due to its compact support:
Previous approaches based on pyramids follow the linear diffusion g poy ' P pport:

formulation, with the additional subsampling in both scale and space. 14

Subsampling in scale results in a limited number of detected sizes, o(d) = ([1—d/h}o> (4d/h+1) (11)
which underestimate or overestimate the representative scales of fea-

tures. Subsampling in space compounds the localization problem. Figiere [-]é is a clamping function between 0 and 1, amds a pa-

ure 4 shows a comparison of an SBTF applied to an aneurism data sateter that controls the local support of the basis function. hAs

On the left, the scale abstraction is computed via a Laplacian pyramiidcreases, more overlap among kernels is obtained, which increases
The scale abstraction is depicted on the lower left corner as a serieshaf smoothness of the field, at the cost of less distinction between the
spheres. When we superimpose the largest spheres onto the origiliféérent scales. One can set= kt, i.e., proportional to the repre-
image, we see that this method greatly mislocates the largest featsentative scale, wheieis usually 1. The user may adjust above and

In addition, the granularity of the detected scales does not capture bedow this value to explore scale fields of varying smoothness. Al-
subtle variations of the different features. This result is representarnatively, one can blend the scale blobs withrifreximunmoperator,

tive of previous multi-scale classification methods, such as the oneibgtead of a sum, in which case the resulting scale field is given by
Lum et al. [18]. On the right, we show the results of our approacls(x) = max,cn{O(||x — xj)t;i }. This is useful when we must give pri-
Note that the distribution of scales is smoother and they are correctisity to larger features and avoid smoothing away the scale variation.
localized in space. Now the aneurism, highlighted in red, is clearur results in Fig.7 and 8 use this operator. In Section 6, we show
extracted from the nearby structures. One can improve the resultstiodt this method can be implemented in the GPU, using hardware-
the pyramid by adding interpolation between different levels. To avoglpported blending methods. Because this interpolation is based en-
the problems described in Fig.2, one can approximate the scale-spé@edy on the scale abstraction, bleeding of a scale into a small feature
with higher order interpolation, as suggested by Kothe [13]. This withay happen. This occurs when a small feature gets embedded in the
improve the granularity of the scales. Localization, however, may nbtob surrounding a large feature. In this case, we can improve the con-
be improved, since it is the product of our nonlinear diffusion filterstruction of the scale field with a visibility test. The visibility test is

In that case, one could construct an anisotropic diffusion pyramil, ansed to modulate the weight of the LoG extrema at a given point. If a
this is the focus of our future research. sample point is not “visible” from the LoG extrema, then its weight
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Fig. 6. Size-based classification of an unsegmented hand data set. (a) Traditional transfer functions make it difficult to emphasize the vessels as
opposed to bones, where the difference in density is little (as is the case with many contrast-enhanced data sets). (b) 2D transfer functions only
improve classification marginally (c) With a size-based transfer functions, the user can now assign colors based on size. In this case, the opacity
mapping is maintained from (a). (d) By using size to map color and also opacity, it is now possible to highlight certain parts, e.g., veins and small
vessels, while hiding other parts, e.g., skin. Note that results are comparable to those of rendering a segmented data set.

becomes 0. A visibility parametaris used to control the sensitivity that the scale-space can be constructed progressively, and iniatened

of this test. This parameter is essentially a thresholding value, and casults are valid approximations. That is, the scale field at a given scale
be based on scalar value or gradient magnitude. A voxel is not vigs-the same whether it is obtained from the original volume, or from an
ble from the LoG extrema if at some point in the ray connecting th@ready smoothed version of the data set. This also has an important
two positions the intensity is below a threshold. Alternatively, one camplication for interactivity, since large data sets$12%) do not need
threshold based on gradient magnitude. An example is shown in Figl@ be analyzed at their full resolution. The scale field can be of a lower
The scale field allows us to classify the brain tissue together with thesolution, and the resulting scales (except for the granularity of which
neighboring vessels. With a visibility threshold, we prevent the scalleey are obtainedjre the same

to be backprojected to those voxels that correspond to vessels, giving

a better classification of the brain. It must be noted that this is a f&st SizE-BASED CLASSIFICATION

approximation that works well for scale fields, and that more accy.. ) . . .
rate results can be obtained with a region growing approach. This c%/ﬁt.h ascale field, we have obtained the necessary information to apply

- . 2 size-based transfer function. An SBTF can be defined as a mappin
b_e added into ou_r_me_thodology as a post-process based on our |n@i O, whereS s the scale field, an@® is a set of optical properr-)p d
size-based classification. ! '

ties, typically a four dimensional tuple containing color and opacity
4.4 Properties attributes. In general, we want to combine the scale field with the
I . . original scalar data values to improve classification. The resulting
The use of diffusion-based scale-space has interesting propertigsgnsfer function is then obtained from a Cartesian product of fields,
which prove important for visualization. Sx F1 X ... x Fn— O, whereFy,...,F, are scalar fields. In most of
our examples, the opacity is both the product of Szed the original
scalar value§ .
Because this method is based on diffusion, it is inherently robust toFig.1 shows a visualization of an aneurysm. Fig.1(left) and (mid-
noise. To illustrate this, Fig.5(c-d) shows a series of synthetic dadfe) use the same opacity values, butin Fig.1 (middle), color values are
sets consisting of randomly sized spheres in a volumetric domain WiBtained from an SBTF. The global differences in size become imme-
Gaussian and salt-and-pepper (S&P) noise. In the bottom, we sh@igtely apparent. On further inspection of the image, subtle variations
the classification of the spheres based on their size (red is the largegf)the width of the vessels also become apparent. In Fig.1(right), the

We can see that the classification does not suffer from the levelsSBTF is used also to define opacity, enabling the user to highlight au-
noise (compare to Fig.5(a)). Furthermore, noise is represented in {Bgatically large features.

smallest scales of the scale field for both Gaussian and S&P noise. Arjg. 6 shows the classification of an unsegmented CT scan of a hu-

size-based transfer function that vanishes for small values carebde ug,5n hand. With 1D transfer functions, it becomes difficult to separate
to suppress the noisy voxels, as shown in Fig.5. voxels belonging to vessels and those in bone tissue. A 2D transfer
. . function, although improves classification, cannot properly separate
44.2 Invariance to Intensity the two. The di?'ferenF():e, however, can be resolvedpvig ar?SBg'F. In
Another interesting property is its invariance to intensity changes. DEig.6(c), we map size to colors, while scalar value is mapped to opac-
tection of extrema in the Laplacian is independent of the local intefly (the same transfer function as in Fig.6(a). We can see a consid-
sity contrast. This means that features of different density but similgrable improvement in classification. Further, small vessels are also
size will be represented similarly in the scale field, as shown in Figlassified based on their width. In Fig.6(d), opacity is mapped as the
5(b). This is important for size-based classification, as it provides giroduct of two opacity functions, based on scalar value and size, re-
thogonality. Now, it is possible to create 2D transfer functions witBpectively. Now the skin tissue can be de-emphasized, while vessels
scalar-value on one dimension and scale in the other. and bone are emphasized.

. . Fig.9(a) shows an MR angiogram of a human head. Fig.9(b) shows
4.4.3 Progressive Construction the size-based classification of the same data set. When analyzing vas-
This is a consequence of two of the scale-space axioms, scale invatitar data sets, maximum intensity projection (MIP) (Fig.9(c)) is often
ance and non-enhancement of local extrema. These state that the apere effective than direct volume rendering. One of the problems is
ations that compute scale space are used in the same way for any gihendifficulty to emphasize structures of interest, due to the accumu-
scale, and also, that the transformation from the original image to alaion of intensity. With an SBTF, we can map opacity directly to the
scale is the same from a finer scale to any coarser scale. This impliesdered samples, to obtain a size-adapted MIP rendering of the an-

4.4.1 Robustness to Noise



giogram. Figures 9(d) and (e) show a rendering where we highlighit another pass, we normalize the result by dividing by the sum of

and suppress the large features, respectively. weights, which is stored in a different channel . To evaluate our ap-
o ) ] proach, we implemented a comparable CPU version and obtained tim-
5.1 Applications to Volume Rendering and Exploration ing results. We used an Intel Core 2 Duo 2.4 GHz with 2GB of RAM

Similar to previous multiscale approaches, an SBTF helps classify a@fad an nVidia GeForce 8800 GTX with 768 MB of texture memory.
segment complex data sets. Fig.7 shows an MRI of a brain. Classifjgs. 10(a) and 10(b) show the timing for the scale-space computation
ing the brain is difficult, since other occluding tissue, such as skin, @4d backprojection stages, respectively, in seconds, for threeefata s
represented in the same density interval. However, when applying @izes (64, 128 and 256). We can see an improvement of about two
SBTF, skin and skull tissue appear as small features, since they @fders of magnitude in both cases. A CPU implementation then proves
relatively thin in comparison to brain tissue. By setting high opacit{p be impractical for interactive visualization. In Fig.10(c) a stacked
to the large features, now we can clearly separate the brain tissuell@ diagram compares the timing between the two stages in the GPU.
shown in Fig.7(b). Note that some vessels and surrounding tissueSjgce most of the cost is required to compute the scale abstraction, we
part of this large feature. In Fig.7(c), we set the visibility parametéian decouple this stage from backprojection. Scale-space computation
to prune voxels that do not correspond to brain tissue, which resuiésdone once, and re-computed only as the user changes the diffusion
in a clear view of the brain. The rendering results are comparable Rgrameters, while backprojection can be done more frequently, as the
lengthy segmentation, but at higher speeds. Furthermore, the sealeW§r changes the smoothness and visibility parameters.

straction already provides a set of points that can be used as seeds for

segmentation. Fig.8 shows a classification of an MRI knee, a noi§yl Limitations and Future Work

complex data set. Transfer functions based on scalar value caprot %Sne of the limitations of our approach is the reliance of a temporary

alratel mldee.’ Stlﬁn g.r];\fd bo?f. properIKi tW';[E z:n SBTbF’ we C?g.f?%lume to compute the scale field. As GPUs improve, we believe that
clearly classify the arfiérent tissues. Note that even bones of Ailele, o of oyr methodology will be implemented in real-time and embed-
ent size are assigned slightly different colors. The spatial relations

bet the diff t lappi truct : | Bd in the volume rendering process. However, since interesting sizes
elzyeinl r? : er%nT over a}i;plnglt_s lruc g_restls_ novxéc elfr' K The d an be detected with a lower resolution scale field, we believe that our
'9.21 shows a &1 scan of muftipie ODJECtS In a backpack. The diy proach is still valid for larger data sets. Although a %l pre-

ficulty to isolate features is lessened with an SBTF. This data set ¢ 5ion scale field cannot be accommodated in current GPU hardware,

Lalns(fja number |(2|f objects of varylng|5|zei|¥vh|cr;.can b? identified nw can still create an interesting scale field at a lower resolution, re-
ased on size. HOwever, as we explore the entire scale-space, smg 5ting the detectable sizes to the resolution of the scale field. If we
sizes cannot be distinguished. For this reason, we can apply SBTFﬁ?risample by a factor of 4, features of sizes from 1 to 4 voxels wide

Ietctively,fby cor}sideringihsuz-rtegizr;s of ﬁh‘et data. Fig.lé;_?gws trEE not be discerned (they will be collectively detected as the small-
stages of zooming Into the data. Al éach stage, a new revea, f"size). However, detection of sub-voxel sizes can be obtained by

higher granularity of sizes. Towards the right, we can detect and high- : i . e
light the differences in size of the small parts of an object, impossi Falyzmg sub-regions at a time (so that each of them can fully fit in

to detect at the full resolution. Compare to the image on the rigl} Xture memory), as shown in Fig.11. We believe that this is a prac-

o X al solution to limited texture memory, and encourages multi-scale
where classification based solely on scalar value does not help isol ﬁloration of large data sets
each part. :

One of the aspects of our approach, being based in diffusion, is fig-
ure/ground separation. Our approach works best when featundseca
) ) ] ) clearly separated from the background. In other cases, such awin flo
Our GPU implementation uses widely available features such as p&gnulation, density may vary smoothly across the entire domain. In
grammable shaders and framebuffer objects. The different stges thjs case, similar to other classification approaches, a thresholding is
scribed in section 4 are implemented using pixel shaders over multiplgeded to clearly define the features of interest. Similarly, detecting
passes. In previous multi-scale approaches, a Laplacian or Gaussiges and cracks in industrial CT implies the classification of back-
pyramid is stored in GPU memory. However, storing a full scale-spaggound as opposed to figure voxels. Since diffusion tends to move
in GPU memory is prohibitive. For example, a 256olume would  from high intensity to low intensity values, holes will not be detected.
need 1GB of memory to store up to 64 scales at 8-bit resolution, or ypthat case, a figure/ground reversal solves the problem.
to 16 at 32-bit resolution. For this reason, we compute the scale fieldsanother aspect of our approach is that our diffusion filter is still
on a per-iteration basis, which only requires one temporary volumgropic. This means that features saggedaccording to the small-
ata time. Therefore, the stages of scale-space computation and Sggf&size of their local structure. For large narrow structures, the4nher
detection are merged into a single pass: , . ent scale is the width rather than the length. Although this has proved

Scale detection: We solve the diffusion equation by imple- o pe a very useful descriptor, this can be extended to multiple types
menting Eq. 4 in a pixel shader. The shader uses as an ingjistryctures to reveal different sizes according to the shape of-a fea
a slice of the 3D texture and the output is written also to @ 3ire, e.g., planar, tubular or blob-like. This can be accomplished with
texture slice, which is subsequently used in the next iteratiocally adapted filters and it is currently ongoing research. This may
To avoid simultaneous reads and writes, we use a ping-pOPEcome a complement to shape-based classification approaches such

approach. To speed up the process of scale detection, we CQ{¥the one introduced by Sato et al. [25].
pute the second derivatives in the same pass. We also keep the

derivatives of the previous two steps in order to find scale-spa9e CONCLUSION
maxima. We encode this so that we use the four channels of a pixel
[R:L(x;t+1),G: 2L(x;t+1),B: O%L(x;t),A: DZL(x;t—l)}, We have introduced the concept size-based transfer functions
wheret is increased at each iteration. The scale maxima is therhich maps the relative size of local features in a volume to color
found by writing out a pixel when the value of the Laplacian at and opacity. Now it is possible to visualize complex data sets such
given iteration (here stored in the blue channel) is the maximum tfat features can be classified based on their relative size. Therefore
the Laplacian of the neighbors in iterations- 1, t andt + 1 (here small features can be clearly separated from large ones, especially
stored in the GBA channels, respectively, for each iteration). As wmportant when these features have similar scalar value. Size-based
increment our iterations, those pixels denoting scale maxima are reeghsfer functions can be achieved with the ussazle fieldswhich
back to the CPU and stored as the scale abstraction. are 3D fields where every voxel represents the representativeatcale
Backprojection: To implement backprojection, we generate a sehat point. We compute these scale fields via scale-space analysis and
ries of small slices for each scale-space blob, with sides proportionaktcset of detection filters. While being prohibitive in the CPU, our
their radii. Each pixel generated by these slices compute the weight@BU implementation enables interactive exploration and can be easily
contribution of the blob. We then use blending to implement the sumeployed in visualization systems. Through a number of examples,

6 GPU IMPLEMENTATION



@) (b)

Fig. 7. Volume classification of the MRI brain data set (256x 256x 156) (a) Direct
volume rendering (DVR) using a 1D transfer function, and detected scales (b)
Size-based classification. Only large regions are highlighted, which correspond
to brain tissue (1 =0, i.e. no visibility test is performed). Note how the brain is
clearly seen, together with some small vessels. (c) With the visibility test (t = 0.3),
we obtain a better classification of the brain tissue. Note that small veins have
been removed.

(b)

Fig. 8. Volume classification of an MRI knee data set (512 x
512x 87) (a) Original data set with a 1D transfer function,
and detected scales. (b) Size-based classification. Note that
bones, muscle and skin can now be separated. Furthermore,
individual bones van be classified differently due to their dif-
ference in size.

(d)

Fig. 9. Size-adapted visualization of angiograms (512x 512x 128). (a) Original DVR of angiogram (b) DVR of angiogram with a size-based transfer
function (c) MIP rendering of angiogram (d) Size-adapted MIP, where only the large features are highlighted (e) Size-adapted MIP, where the large

features are suppressed.
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Fig. 10. (a) Timing of scale-space computation and detection for CPU vs. GPU implementations, for three data sets (64°, 128 and 256%) in seconds
(log scale). (b) Timing of the backprojection stage. Note that the GPU implementation is two orders of magnitude faster. The CPU implementation
is prohibitive for interactive exploration, while the GPU implementation approaches real-time for the smallest data sets. (c) Timing comparison
for scale-space computation and backprojection using a stacked line diagram. Backprojection is considerably faster compared to scale-space

computation, which enables us to decouple the stages of our methodology.



Fig. 11. Volume rendering of the backpack data set (512x 512x 373). From left to right: (1) Traditional transfer function based on data values (2)
SBTF on the entire data set. Note that differences in size become immediately apparent. (3) Selective SBTF on a small region. At this scale, we
can now visualize more sizes of interest. (4) In a smaller region, we can find differences in size undetectable from the entire dataset. In this case,
we are able to decompose the parts of an object based on size. Compare to classification based on scalar value on the right.

we have shown that classification of complex data sets is made €ag} T. M. Koller, G. Gerig, G. Szekely, and D. Dettwiler. Migcale detection
ier. Rendering of vascular data sets, such as MRIs of aneurysms, ca of curvilinear structures in 2-d and 3-d image datald€V '95: Proc. of
now present to the user the subtle variations between different vessel the Fifth International Conference on Computer Visipage 864, 1995.
sizes. Size-based transfer functions also improve the way occlusiofilig] U. Kothe. Accurate and efficient approximation of the thomous gaus-
handled in volume rendering, and we have shown a number of exam-

ples where our approach achieves results comparable to those of tifdé}

consuming segmentation. Furthermore, our approach readily psovide ) ) .
an abstraction, which can be used as a seed to more sophisticated [&éb_T. Lindeberg. Scale-space for discrete signlt&E Trans. Pattern Anal.

mentation algorithms. Size-based transfer functions provide a no
exploration technique that can be extended in a number of ways

wards a more intuitive visualization of complex data sets.
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