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Abstract—In this paper, we study the sensitivity of centrality metrics as a key metric of social networks to support visual reasoning.

As centrality represents the prestige or importance of a node in a network, its sensitivity represents the importance of the relationship

between this and all other nodes in the network. We have derived an analytical solution that extracts the sensitivity as the derivative

of centrality with respect to degree for two centrality metrics based on feedback and random walks. We show that these sensitivities

are good indicators of the distribution of centrality in the network, and how changes are expected to be propagated if we introduce

changes to the network. These metrics also help us simplify a complex network in a way that retains the main structural properties

and that results in trustworthy, readable diagrams. Sensitivity is also a key concept for uncertainty analysis of social networks, and we

show how our approach may help analysts gain insight on the robustness of key network metrics. Through a number of examples, we

illustrate the need for measuring sensitivity, and the impact it has on the visualization of and interaction with social and other scale-free

networks.

Index Terms—Social network visualization, centrality, sensitivity analysis, Eigenvector and Markov importance
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1 INTRODUCTION

S
OCIAL network analysis and visualization have become

increasingly important with the growing popularity of

Websites such as Facebook and Flickr. Although statistical

analysis is often used for discovering patterns and formulat-

ing hypotheses about the social interaction, visual analysis

can provide better overviews and reveal patterns missed via

quantitative measures alone. Recently, Perer and Shneiderman

argued for the tight integration of social network statistics

and visualization as a fundamental tool towards effective

exploration of social networks [42].

One of the most studied statistical metrics for social and

other scale-free networks is centrality. Central nodes in a

graph are often deemed as important hubs through which

social interaction is conducted and are good indicators of the

relative popularity of individual nodes and clusters. Centrality

has also been recognized as an important statistic for biolog-

ical networks. For instance, Jeong et al. found a significant

relation between lethality and centrality in protein networks

[29]. As a consequence, it is important to not only enhance

visualizations of social networks with centrality metrics, but

also to understand the factors involved in the centrality of a

given node.

In this paper, we study an aspect of centrality often ignored

in visualization: its sensitivity. In general, the sensitivity of

a function refers to the change in the output values in terms

of changes in its inputs. In the case of a social network, we

can consider the centrality of nodes as a function of structural

variables, such as degree, or, more generally, as a function

of the adjacency matrix of a network. Centrality is in fact a

multi-variate function, affected by each individual node in a
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network. Therefore, we can think of the centrality sensitivity of

a node with respect to another as the change in the centrality

metric of the first after a change in the second. The study

of sensitivity helps us answer questions such as: If we add

one or more edges to a node, how would the centralities of

the other nodes change? Do nodes in a sub-network increase

importance together, i.e., is it a collaborative network, or do

nodes compete in importance with each other? To support

these queries, we visualize the sensitivity values directly on

the social network visualization. An overview of the network,

enhanced with sensitivity parameters, helps us gain insight

on the global distribution of importance. Overviews help us

answer questions such as: To what group of nodes can we

associate the importance of a given node? Are all nodes

surrounding it equally responsible for its centrality? What are

the most important nodes relative to a single focal node?

To this end, we approach the problem from the perspective

of calculus of variations. In general, computing the sensitivity

of a multidimensional dataset is a challenging task, as the

number of possible variations grows exponentially with the

number of variables. Common approaches include analytical

differentiation, local methods, which approximate the sen-

sitivity in a neighborhood along each variable at a time,

and Montecarlo simulations, which use stochastic searches of

the subspace of variations. In our case, we follow a hybrid

approach using local neighborhoods and analytic derivation,

which computes sensitivity of a function as its partial deriva-

tive with respect to each of the variables. We describe a

general method for computing these derivatives for centralities

that can be expressed as functions of the adjacency matrix,

such as the Eigenvector and Markov centralities [5], [48].To

better understand the notion of sensitivity and derivatives of

centrality, let us analyze the problem for a small network.
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(a) (b) (c) (d)

Fig. 1. Centrality sensitivity. (a) Subnetwork of the genealogy of influence data set [25]. (b) Plot of changes in centrality

for some key nodes as the degree of Russell changes. We see that some nodes become less important while others

improve. The rate of change of these functions, their derivatives, are the sensitivity parameters. (c) We can color code

the sensitivity (red/blue indicates negative/positive influence) to understand how centrality is propagated for a change

in a given node. (d) A full visualization of the sensitivity parameters.

1.1 An illustrative example

Consider the network depicted in Figure 1(a), a subset of a net-

work of intellectual influence among great thinkers in History

[25]. In this network of renowned artists, mathematicians and

philosophers, a link is made if a person’s work has influenced

the works of another. We see this subnetwork as a combination

of a star network rooted by Husserl and a cluster formed by

the nodes on the right, including Russell, Frege, Godel, and

others. To understand sensitivity, we perform the following

experiment. Take the node Russell, and start increasing its

degree. Because there are so many combinations that lead to

the same increment in degree, let us assume that this change is

stochastic. In this example, we assume that all links incident

to Russell have the same probability of 1/5 (since there are

five edges). Then, we start increasing all these edges by 1/5,

then 2/5, and so on. At each step, we measure the centrality

of all nodes. The result is depicted in Figure 1(b). The x

axis represents the change in the weights associated to the

edges incident to Russell and the y axis is centrality. Each

line corresponds to the centrality of one of the nodes in the

cluster. We clearly see that the changes applied to Russell

have both positive and negative effects, e.g., it boosts the

centralities of James, Bolzano, Frege and Godel, but also

hinders the centralities of Husserl and Carnap. Notice also

that in the latter case, the impact is indirect, since Russell

and Carnap are not directly connected. Notice also that the

rate at which the change occurs is not uniform. This rate, the

derivative of those curves, is the sensitivity of centrality, and

can be computed analytically for some centrality functions, as

described in Section 3.

An example visualization of these derivatives is shown in

Figure 1(c), where color denotes the sign and strength of the

sensitivity. Red and blue links denote negative and positive

sensitivity, respectively, while the saturation of color indicates

strength. For example, Frege’s sensitivity to Russell is smaller

than that of James’. Dashed lines denote indirect sensitivities,

which occur between pairs of nodes not directly connected.

These are useful to visualize the “region” of influence of a

node. If we repeat the experiment for all nodes, we end up with

a pairwise matrix of sensitivities. In Figure 1(d), we visualize

the pairwise sensitivity between all connected nodes using the

same color scheme. Note that sensitivity is, in general, not

symmetric. For example, the sensitivity between Husserl and

Frege is asymmetric.

1.2 Contributions

In this paper, we provide an analytical mechanism for com-

puting sensitivities of centrality and show their practical value

for visual reasoning about social networks. In particular,

we provide: (1) a general strategy for computing the varia-

tion of centrality as an analytical expression for Eigenvector

and Markov centralities, and a numerical approximation for

centrality functions in general, (2) sensitivity overviews in

node-link diagrams as a mechanism for characterizing and

filtering complex social networks, (3) a network simplification

strategy that preserves the centrality distribution of the original

network, and (4) a mechanism for assessing uncertainty in

networks and its application in understanding the robustness

of network metrics.

The study of sensitivity in social networks is important to

characterize networks that are seemingly similar, to understand

the sources of variability in metrics such as centrality, and to

gain insight on the social dynamics of a network. To the best

knowledge of the authors, this is the first variational study of

social networks from the perspective of visualization.

2 RELATED WORK

2.1 Network Centralities

The issue of centrality has been widely explored in numerous

settings, including sociometry, biology and information sys-

tems [43]. One of the most obvious ways of measuring cen-

trality of a node is via its degree, as first noted by Shaw [44].

However, this simple definition of centrality may not suffice to

capture the complex structural relationships in a graph. Harary

and Hage [19] proposed a centrality based on eccentricity,

defined as the maximum distance of any node to other nodes

in the network. Other metrics are defined in terms of the total

distance to other nodes in the network. Nodes with small total

distance are said to be central. Numerous closeness metrics
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have been proposed, including the information centrality and

radiality of a node. For a closer look at these metrics, refer to

Jacob et al. [28] and Newman’s survey [38].

Other more popular methods have been proposed for ap-

plications such as the analysis of social networks and Web

site ranking. These methods can be broadly categorized as

centralities based on shortest paths, feedback and random-

walks [7]. The most common metric based on shortest paths is

the betweenness centrality of a node, introduced by Anthonisse

[2] and Freeman [14], as an alternative for closeness centrality

in disconnected graphs. Feedback-based metrics define the

centrality of a node in terms of the centralities of other nodes.

Bonacich introduced a metric based on the eigenvectors of

the adjacency matrix of a network [5]. Before Bonacich,

Hubbell formulated the problem in a similar fashion, where the

centrality of a node is a linear combination of the centralities

of others, whose solution can be found from the ensuing sys-

tem of linear equations [27]. These feedback-based methods

became more popular for Web page indexing and are the

core of search algorithms such as PageRank [9], HITS [32],

and SALSA [37]. Unlike previous eigenvector centralities,

algorithms such as PageRank made the matrix stochastic,

ensuring that the corresponding Markov chain converges to

a stationary distribution. Finally, the idea of using random

processes to represent a network led to Markov centralities,

as proposed by White et al. [48]. Their metric is defined as

the mean first-passage time of the Markov chain derived from

the adjacency matrix of the network.

Several comparisons of these centrality metrics have been

performed. Freeman presents an exhaustive treatise of these

methods in his seminal paper [14]. Dwyer et al. performed

a visual analysis to compare different centrality metrics [12].

They present a series of conventional visual analysis methods

and hierarchical views to correlate the centralities of nodes

under different metrics. Koschützki and Schreiber present a

comparison of centrality measures for biological networks

[35]. Although no method was particularly better than the

others, the authors recognized that each centrality method

provided interesting insight on how proteins interact.

Inspired by these results, we saw a need to understand the

behavior of centralities. In this paper, we extract sensitivity

as a visual quantity that helps users gain additional insight

on the distribution and evolution of centrality metrics, and

consequently, on the structure and dynamics of the social

network. Similar studies have been carried out to measure

the sensitivity of centralities to small perturbations in the

network. Langville and Meyer [36] studied the numerical

stability of the eigenvector centrality in the context of Web

search. Ng et al. [40] were able to provide bounds of the

difference magnitude between old and new centralities after a

perturbation. These bounds were later improved by Bianchini

et al. [4] In their study, they were concerned mostly with the

stability of the centrality vector given a perturbation in the

network. In our paper, we have a similar goal, although we

discriminate these perturbations as changes in the degree of a

node. Therefore, the difference in centrality can be understood

as the partial derivative of the centrality with respect to the

degree. Naturally, these derivatives can be combined to provide

a bound (although not necessarily tight) of the stability of

the centrality of a node. A deeper analysis of the stability of

centralities is performed by Koschützki et al. [34]

2.2 Network Visualization

The literature in network and graph visualization is extensive

[13]. One of the most widely studied topics is the issue of

graph layout. Although force-directed placement is popular

and easy to implement, other more sophisticated approaches

have been proposed, such as GRIP [15], ACE [33] and

FM3 [18]. To improve the exploration of such networks, a

number of tools have emerged, such as yEd [26], GUESS

[23] and JUNG [24], which provide a number of layouts,

overview+detailed views, magnifying glasses and color encod-

ing of graph properties. Heer and Boyd presented Vizster, a

system for visualizing social networks [21]. In addition to the

clustering effect of forced-directed layouts, they also provide

an explicit visualization of communities.

Recently, there has been particular interest in guiding the

visualization of social and scale-free networks using centrality.

Perer and Shneiderman argue that an effective social network

system must tightly couple statistics and visualization to

provide a more effective exploration [42]. Brandes and Wagner

discuss visone [8], a system for visualizing social networks

based on centrality, which includes layered and radial layouts,

similar to the Pajek system [3]. To improve the layout of large

graphs, Girvan and Newman [16] propose edge filtering based

on the betweenness centrality (BC) of edges. By removing the

edges with high BC, they obtain simpler layouts that capture

the structure of the network. A similar approach was explored

by van Ham and Wattenberg [46]. The minimum spanning

tree retains these clusters. When the highest BC edges are

added back to the tree, the result is a filtered, but structurally

meaningful, network. A different approach is taken by Jia et

al. [30], who use the highest BC edges to construct the tree.

They based their approach on the observation that scale-free

networks are mostly minimally connected. Using the highest

BC nodes, they extract the communication channels that are

most important in the network. In our paper, we show that

centrality sensitivity also provides a ranking of the edges, and

that, when used to compute a minimum spanning tree, the

result maintains the centrality of the important nodes. This

property is important to ensure the correct interpretation of a

simplified network diagram.

3 CENTRALITY SENSITIVITY

A graph G = {V,E} consists of a set of nodes V and a set

of edges E. A node centrality is a function C : V 7→ R, that

assigns a real value to each node in V . The larger the value

C(v) is, the more important a node v is. One of the simplest

ways to measure the centrality of a node is via its degree. The

degree of a node is the number of edges incident to that node.

In a more general sense, for weighted graphs we can define

the degree or valency of a node as the sum of weights of all

the edges incident to that node. Unweighted graphs are just

a special case where the weight of an edge is 1. To this end,
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it becomes convenient to represent a graph via its adjacency

matrix A of size n×n, where n is the number of nodes.

For directed graphs, it is often common to divide this

metric as in-degree and out-degree, corresponding to the sums

of weights for incoming and outgoing edges of a node,

respectively. During our discussion, we will derive centralities

in terms of the adjacency matrix, regardless of whether the

matrix denotes a directed or an undirected graph.

We can see that the degree of a node is a somewhat local

metric of centrality. Other measures, such as betweenness and

eigenvector centralities, as discussed below, act globally, and

the weights associated to the edges incident to a node can

potentially affect the centrality of other nodes throughout the

network. The measure of how much a node can affect the

centrality of others is called sensitivity, within the context

of sensitivity analysis [10]. One mechanism for computing

sensitivity is via function derivatives [17].

In a general sense, sensitivity analysis explores the variation

of a function in terms of the variation of its inputs. For

social networks, we can consider the centrality as a multi-

dimensional multi-variate function, which takes an adjacency

matrix as input and its output is an n-dimensional vector,

where each of its components is the centrality of a node.

To find the sensitivity of this function, we must first define

the variable with respect to which we compute the derivative.

In principle, it is possible to compute the sensitivity of

centrality with respect to each edge, which is analogous to

computing the derivative of the centrality function with respect

to each entry in the adjacency matrix. However, the resulting

sensitivity space is astronomical, since it must consider all

possible variations of variables. Even in the simplest case,

where the sensitivity is computed with respect to each edge

independently, the number of sensitivity parameters would

grow cubically with the number of nodes. Instead, we define

one variable per node, which is not only computationally less

expensive, but it results in a measure of sensitivity easy to

understand. The definition of these variables and the associated

derivatives is formalized below.

3.1 A variational definition of a social network

A variational definition of a social network describes its struc-

ture, typically the adjacency matrix, and subsequent metrics, as

functions of variables associated to its elements. In this paper,

we define variables associated to each node. Let us define n

independent variables representing a parameterized space for

the weighted degree of each node t1, t2, ..., tn. Therefore, we

can think of the adjacency matrix as a function of these pa-

rameters, and consequently, a centrality metric as a composite

function in terms of the adjacency matrix.

We therefore write centrality as a function:

C(t1, t2, . . . , tn) (1)

with partial derivatives with respect to these parameters

∂C(t1, ..., t, ..., tn)

∂ t
= lim

h→0

C(t1, ..., t +h, ..., tn)−C(t1, ..., t, ..., tn)

h
(2)

Therefore, the derivatives of centrality can be represented as

a matrix S where each element

si j =
∂Ci(t1, ..., tn)

∂ t j

(3)

encodes the sensitivity of node i with respect to node j. To

find an infinitesimal change in the centrality, and therefore,

its derivative, we observe that many centrality metrics are

algebraic operations on the adjacency matrix. Therefore, we

can expand the derivative in terms of the derivatives of the

adjacency matrix, using the chain rule of differentiation:

∂C(A)

∂ t
=

dC

dA

∂A

∂ t
(4)

where the derivative of the adjacency matrix is, analogously,

∂A(t1, ..., t, ..., tn)

∂ t
= lim

h→0

A(t1, ..., t +h, ..., tn)−A(t1, ..., t, ..., tn)

h
.

(5)

This means that, if we know the closed form of both the

centrality function and the adjacency matrix, we can readily

compute the sensitivities of centrality via symbolic differentia-

tion. However, adjacency matrices are seldom, if ever, defined

analytically in terms of a set of parameters. Instead they are

defined discretely as a collection of edges that may change

over time. For this reason, we must approximate the variation

of the adjacency matrix for a given change in one of the

variables ti. Because we define ti as a variable that models the

degree distribution, an infinite number of adjacency matrices

can result in the same variation. Say, for example, that we want

to measure the variation in the adjacency matrix that results

from adding 1 to the degree variable ti. Naturally, this can be

obtained by adding a new edge incident to i of weight 1, or

increasing the weights of, say, 10 edges incident to i by 0.1,

and so on. We adopt an stochastic approach and define the

variation of the adjacency matrix as a probabilistic change in

all the edges incident to that node. The probabilities are given

by the edge weights. Formally, we can define the variation

matrix with respect to node k as follows:

Ai j(t1, ..., t +h, ..., tn) ≈ Ai j(t1, ..., t, ..., tn)wi j(t,h) (6)

wi j(t,h) =

{

1+ h
deg(t) , i = k or j = k

1 otherwise
(7)

where deg(t) is the degree function, so that deg(ti) =
degree(vi), for a node vi. It can be seen that deg(t + h) =
deg(t) + h, for all t. This equation simply states that the

adjacency matrix is updated to “report” a change in degree as

the change of the edge weights proportional to the probability

of each edge.

This definition does not assume anything particular about

the adjacency matrix, such as symmetry. Therefore, this vari-

ational approach can be applied to directed and undirected

networks alike. Figure 2 shows the result of extracting sen-

sitivities for different variants of the network depicted in

Figure 1. From left to right, we show the sensitivities for

a weighted undirected network (edges are bidirectional with

the same weight, i.e., A is symmetric), for an unweighted (b)
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(a) (b) (c) (d)

Fig. 2. Visualization of sensitivities for different graph types. (a-b) Weighted undirected graph as an adjacency matrix

(a) and a node-link diagram (b). Notice the imbalance in the sensitivity between James and Russell. (b-c) Weighted and

unweighted directed graph. Although the overall distribution of sensitivity is preserved (two sub-networks separated

by red links), we notice the sensitivities of James are reversed when weights are added.

and a weighted (c) directed network. Overall, the sensitivities

exhibit similar behavior, since the network is small, but subtle

relationships emerge. For example, James is more sensitive to

Russell than Bolzano is, when considering uniform edges. But

this ranking is reversed when weighting is used.

In the following sections, we follow this variational ap-

proach to derive formulas for the sensitivity of both Eigen-

vector and Markov centralities, based on feedback and random

walks of the adjacency matrix, for which there is a continuous

function. Then, we describe a general approach for approxi-

mating sensitivity via forward differences.

3.2 Eigenvector Centrality

For the case of eigenvector centrality, whose variants are at

the core of PageRank [9] and HITS [32], the centrality of a

node can be formulated as a linear combination of the scores

of the other nodes, which results in the eigenvector equation:

Ax = x (8)

where A is the adjacency matrix of the network. The solution

can be found as the eigenvector corresponding to the eigen-

value λ = 1. Alternatively, one can normalize the adjacency

matrix A so that the sum of columns is 1. In this case, the

solution to the problem is the eigenvector corresponding to the

largest eigenvalue (which equals 1). The eigenvector centrality

of a node is therefore CE(v) = xv.

To find the derivative with respect to a degree variable ti,

let us denote Q = A− I, so that Qx = 0. Differentiating at both

sides, we have:

∂ (Qx)

∂ ti
= 0

∂Q

∂ ti
x+Q

∂x

∂ ti
= 0

from which it follows our formula for the eigenvector central-

ity sensitivity:
∂x

∂ ti
=−Q+ ∂Q

∂ ti
x (9)

where Q+ is the pseudo-inverse of Q (since Q is, in general, a

singular matrix). This pseudo inverse can be computed using

the singular value decomposition of Q or the least squares

pseudo-inverse: Q+ = (Q⊤Q)−1Q⊤.

3.3 Markov Centrality

This centrality interprets the network as a Markov process,

and can be understood intuitively as the amount of time an

imaginary token performing random walks spends on each

node. According to White et al. [48], this can be computed as

the mean first-passage time in the Markov chain [31]:

mrt =
∞

∑
n=1

n f
(n)
rt (10)

where f
(n)
rt is the probability that the chain first returns to node

t in exactly n steps. According to Schaffer et al., this can be

computed as a matrix M,

M = (I −Z +EZdg)D (11)

where I is the identity matrix, E is a matrix containing all

ones, and D is a diagonal matrix where each element in the

diagonal is the reciprocal of the stationary distribution x(v) of

a node v. Z is the fundamental matrix of the Markov Chain,

and Zdg is a matrix consisting of the diagonal elements of the

fundamental matrix. Z is defined as:

Z = (I −A− ex
T)−1 (12)

where A is the Markov transition probability matrix and x

is a column vector of the stationary probabilities, which are

the same ones computed for the eigenvector centrality as the

solution to Qx = 0.

The Markov centrality of a node v (among n nodes) can

therefore be extracted from M as [48], [7]:

CM(v) =
n

∑s∈V Msv

(13)

The derivatives of M now can be found analytically as:

∂M

∂ ti
= (I −Z+EZdg)

∂D

∂ ti
+(−

∂Z

∂ ti
+E

∂Zdg

∂ ti
)D (14)

where the derivative of the fundamental matrix, being the

inverse of another matrix, is

∂Z

∂ ti
=−Z(

∂Q

∂ ti
− e

∂x

∂ ti

T

)Z (15)
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Fig. 3. Error plot of finite difference approximation and

analytic derivation for Eigenvector (left) and Markov (right)

centralities. The x-axis plots nodes in decreasing order

of the error. The y-axis denotes the mean square error

(MSE) of the linear fit between the approximated and the

analytic derivative. Although an approximation, it serves

for validating the correctness of our derivation. Notice the

difference in accuracy of the flickr data with respect to

the others. This is due to the tight connectivity in this

dataset, which makes the derivatives more accurate as

they influence each other directly.

The derivative ∂D/∂ ti is a diagonal matrix containing the

inverse of the derivatives of the stationary probabilities x, and

∂Zdg/∂ ti is the diagonal of the derivatives of Z. The partial

derivatives of Q and x are computed as defined above for the

case of eigenvector centrality.

3.4 Sensitivity via Forward Differences

As described above, it makes sense to compute the sensitivity

as a derivative of the centrality function, since it can be defined

as a continuous function in terms of the adjacency matrix A.

Other types of centrality, such as closeness and betweenness

are usually defined in terms of a count of shortest paths or

other metrics. This makes it difficult to obtain a derivative.

However, a sensitivity metric can still be obtained applying

finite differences.

For a given centrality metric, we can approximate the

derivatives as the change in centrality induced by the variation

matrix. That is:

∂C(A)

∂ t
≈

C(A(t1, ..., t +h, ..., tn))−C(A(t1, ..., t, ..., tn))

h
(16)

where C(A(t1, ..., t +h, ..., tn)) is the centrality function of the

graph that results from a variation matrix along parameter t.

3.5 Validation

To evaluate the validity of our approach, we approximate

the derivatives via finite differences, as described in Section

3.4. We then compute the mean square error of the linear fit

between the approximated and analytical values for the Eigen-

vector and Markov centralities. Figure 3 shows the error of the

finite difference approximation for both the Eigenvector and

Markov centralities. Although an approximation, it helps us

validate the results of our analytic derivation, since, in theory,

the derivatives should represent the amount of change in the

centrality of a node when the degree of another node changes.

Note the logarithmic scale on number of nodes. Similar to

the distribution of centrality of small world networks, the

error exhibits an exponential fall off. This means that highly

central nodes are more sensitive to approximation error than

other relatively unimportant nodes. We see that the linear

approximation is quite good for both types of derivatives.

This is important as many centralities may be difficult to

differentiate analytically. The most dramatic difference can

be seen between the flickr data set and the other networks.

We believe this is due to the tight connectivity in the flickr

data set compared to the rest. Since each node practically

influences directly every other single node, there are less

chances of introducing numerical error in the approximation.

As the length of random walks between any pairs increases,

the approximation of their relative influence (partial derivative)

becomes less accurate.

4 VISUAL REASONING

Here we discuss some of the applications of centrality deriva-

tives in the visualization of social networks to improve the

analysis and understanding of interaction between nodes in

a scale-free network. Some of the questions that arise when

analyzing social networks, which centrality derivatives help

answer via visual means, are: (1) What is the distribution of

sensitivity in a social network? Do links represent friendship

or enmity relationships? These questions can be answered, at

a glance, in a visualization of mutual sensitivity. (2) Can we

simplify the network representation to its core elements? Is

the simplification meaningful? Sensitivity-based simplification

can be used to obtain more manageable graph layouts that

have a similar centrality distribution to the original network.

(3) What are the most important nodes in relation to a given

search, outside their immediate neighbors? Is the range of

sensitivity of a node large or local? With a search-and-expand

approach, we can provide efficient means of social network

navigation. (4) How reliable are centrality metrics? This type

of reasoning, about the analysis itself, is seldom answered

in typical visualization applications. Sensitivity analysis is an

essential tool for measuring the robustness and uncertainty of

centrality and related metrics.

4.1 Visualizing Friendship and Enmity

The natural application of sensitivities to visualization is

the generation of overviews. These overviews, where we

encode the sensitivity as a visual property, help understand

the distribution of importance and the types of relationships

represented by the links. One of the properties of sensitivity

parameters is that they can be characterized by their magnitude

and sign. This generates a signed network that is essential for

analyzing the social balance of a network. In this context, we

can refer to positive links as representing “friendship”, while

negative links represent “enmity”. This analogy, widely used

within the context of social dynamics, helps us understand the

evolution of social networks in terms of the balance of the

signed edges in triads [1]. For example, a balanced network is

likely to evolve into an “utopia”, formed by all positive links.
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(a) Complete (b) Star (c) Ring (d) Ring+Complete

Fig. 4. Friendship and enmity on simple networks. Nodes in complete (a) and star (b) networks compete for importance

and therefore exhibit strong negative sensitivities, while nodes arranged in a ring (c) exhibit collaboration. Hybrid

networks exhibit the two behaviors (d).

(a) Friendster (b) Astrophysics (c) Del.icio.us

Fig. 5. Color encoding of sensitivities helps identify different types of interaction. (a) Collection of star-shaped

networks. Inter-cluster links exhibit negative sensitivity. (b) Tightly connected networks with either a strong positive

or a strong negative sensitivity. Here, we see one competitive and one collaborative network. (c) Hybrid case with

tightly-connected groups linked via a core network.

Because this analogy is easy to comprehend, we use the same

terminology here.

We have experimented with a number of data sets with

different structure, and have identified key properties as a re-

sult of the visualization of the sensitivity parameters. Figure 4

contrasts several simple networks consisting of a core network

of 6 nodes and 5 peripheral nodes. Depending on the topology

of the core network, we observe different relationships. For a

complete graph, nodes are competing for importance and we

observe a large negative sensitivity among all nodes. A similar

behavior is seen for a ring network, although we observe an

asymmetric relationship. Nodes are more sensitive to changes

on the center of the star (node 1), while having little impact on

that node. For a cycle, we see a more collaborative network,

where each node is “friends” with their own neighbors. Hybrid

networks, like seen in Figure 4(d) show the two behaviors, as

it is formed by a complete graph connected to a wheel. In real

networks, we often find a combination of these types.

Figure 5 summarizes our study with the selection of three

types of networks we have encountered in our experiments.

Figure 5(a) shows a typical sparse network, often found in

hierarchies and exhibiting a number of subnetworks in a star

pattern. This particular example shows the core network of

the Friendster social network and the main connections of

these core nodes. We notice a predominancy of negative links

between clusters. This is expected, since each cluster center

has roughly an equal chance of becoming the most important

node. Therefore, any change in a cluster center will impact

negatively the importance of another. But the visualization also

characterizes the magnitude of this competitive relationship.

We see that the root of the largest cluster (towards the right)

has a larger sensitivity to the clusters in the middle (a darker

red edge) than the other cluster centers. Figure 5(b) shows the

highly interconnected core of the co-citation ArXiv network. A

different pattern emerges. We do not see the individual skeletal

negative links, but we see them all clustered within a single

region. By contrast, other interconnected groups, such as the

one towards the right, exhibits collaboration (all positive links)

rather than competition (all negative links). This indicates a

separation of groups that may not be evident in an overview

and seems typical of tightly connected networks, such as in

certain specialized co-citation or proximity networks. Sec-

tion 5.1 describes another example of this type of behavior.

Figure 5(c) shows a hybrid network, where tightly coupled

subnetworks are connected via a few links, resembling both

the star-shaped clusters and the tightly connected group. This

example is the core subnetwork of the del.icio.us graph, a

Web tagging social networking site. In this case, we see

a similar behavior, but negative links are not exclusive of

intercluster links. We also see a collection of groups of varying
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connectivity. Specifically, the group in the lower part suggests

that it is formed by smaller subclusters, one of them highly

competitive (red links) while others, less tightly connected

and more collaborative (blue links). Notice how this cluster

resembles the distribution of sensitivity of the ArXiv network.

4.2 Sensitivity-guided Simplification

Another important application of centrality derivatives is the

ranking of edges for filtering and simplifying complex net-

works. This idea was suggested by Girvan and Newman [16]

and van Ham and Wattenberg [46]. Both use the between-

ness centrality (BC) of edges, analogous to the betweenness

centrality of nodes, to rank the edges. By removing the

highest BC edges, van Ham and Wattenberg obtain a minimum

spanning tree that preserves the structural properties of the

network, in particular, the presence of clusters of interest. In

a diametrically opposite direction, Jia et al. [30] consider the

highest BC edges first to construct a maximum spanning tree.

This metric preserves the communication paths that form the

network.

Sensitivity, although not equivalent to edge betweenness

centrality, also provides an edge ranking. Therefore, it is only

natural to study the implications of this metric in simplifying

a social network. We follow the general strategy laid out by

previous simplification approaches and compute the minimum

spanning tree of the graph, where each edge is weighted, in

our case, by the centrality sensitivity. We first performed a

qualitative analysis where we obtained simplifications of a

number of data sets under different weighting schemes, includ-

ing uniform weighting, where all edges are equally important,

weighting based on edge betweenness and weighting based

Eigenvector sensitivities. Figure 6 compares the results for

the network of genealogy of influence, a network that relates

great thinkers in History depending on the influence of one

thinker on the works of another [25]. In this visualization, we

use circles to represent each node, with sizes proportional to

their centrality. Labels of the most important nodes are also

highlighted. At a glance, it is difficult to judge which method is

better. However, we were able to identify structural properties

that were retained during the simplification. In this paper,

we are interested in how centrality was preserved. For the

cases of uniform and edge betweenness weighting, centrality

of nodes is barely preserved. For the latter, a global notion of

centrality remains, since the most important nodes remained

clustered together. However, we see that important nodes often

appear at the edges of the network rather than at its center.

This is somewhat solved with the sensitivity, and we now

see the highlighted names at the center of local groups. For

betweenness sensitivity (not shown), we found that groups

are often connected through unimportant nodes, since shortest

paths can short-circuit through relatively unimportant paths.

For the Eigenvector centrality sensitivity, the nodes retained

the centrality better, and important nodes appear connected in

a single skeletal path, highlighting what Jia et al. identified as

important communication paths.

In general, selecting an appropriate simplification scheme

depends on the task at hand and no single method can

be said to be superior to others. Simplification based on

edge betweenness retains most local clusters, but they appear

connected in a rather arbitrary way. Eigenvector derivatives,

on the other hand, preserve centrality, but may break apart

some loosely coupled clusters. We show an example of such a

case in Section 5.3. This observation prompted us to perform

a systematic evaluation of the result of simplification from a

structural point of view.

4.2.1 Preservation of centrality

To validate how effective is a simplification, we must first

measure the quality of a simplification in a meaningful way.

At a higher level, the individual task, the semantics of the data

and the context are factors that determine whether a specific

layout is useful or not. These are difficult to measure and

isolate, and, to the knowledge of the authors, there has not been

a convincing study that helps reveal these issues. On the other

hand, from an algorithmic point of view, one can study simpli-

fication algorithms in terms of their performance to preserve

structural properties. In previous simplification approaches, the

main goal is to preserve clusters, but evaluation is performed

mostly as a qualitative assessment. Here, we performed a

systematic evaluation and analyzed the relationship between

the network statistics before and after simplification. In par-

ticular, we were interested in the degree to which centrality is

preserved after simplification. We argue that a good network

simplification should retain the centrality distribution of the

original graph. This property is important to avoid misleading

visualizations. Node link diagrams often convey the notion

that, if a node is connected to many other nodes, it is regarded

as important. When the network is described as a hierarchy,

it is therefore expected to see important nodes at the higher

levels. We studied the impact of simplification on the centrality

metric for a number of datasets. Figure 7 summarizes the

results for seven networks and three weighting schemes for

simplification: Eigenvector sensitivity, uniform weighting and

edge betweenness. Each graph plots the original centrality of

each node in the x-axis vs. the new centrality in the simplified

network (y-axis). A centrality-preserving simplification should

result in a distribution of points near the diagonal. Notice

how Eigenvector sensitivities consistently result in a better

preservation of centrality than the other two schemes. For

example, note that the few important nodes remain important

for the most part (points in the upper right corner of plots).

In addition, we gain insight about the nature of the network

by looking at these plots. We can identify four types, (a),

(b), (c-f) and (g). The first one corresponds to a proximity

network, which behaves different to social networks in that

there is no preferential attachment. Everyone has roughly the

same probability of being in proximity to others. The second is

a synthetic dataset. The third group corresponds to real social

networks from online dynamics or co-citation patterns. Lastly,

group (g) is a protein network, which appears more consistent

across the different metrics.

4.3 Search and Explore

Centrality derivatives are also useful for bottom-up visualiza-

tion approaches, where we begin with a given node, possibly as
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(a) Unweighted (b) Edge Betweenness (c) Eigenvector Sensitivity

Fig. 6. Comparison of edge simplification methods for the influence dataset [25]. Size and opacity denote the centrality

of a node. We compare several edge weighting strategies: uniform, edge betweenness, betweenness sensitivity and

Eigenvector sensitivity. The latter is the one that preserves node centralities the most.

MIT Influence Apache ArXiv Del.icio.us Kazaa bo

Fig. 7. Measuring centrality preservation of simplification strategies for a number of networks. Top: Eigenvector

sensitivity. Middle: Edge betweenness. Bottom: Uniform. The Eigenvector sensitivities consistently preserve the

centralities of important nodes (closer to diagonal).

a result of a search, and then expand the context and navigate

around the network to discover important relationships of that

node. This approach has been shown to be effective when

exploring large graphs [45]. An example is shown in Figure 8,

for the core network of the del.icio.us data set. To support

effective exploration of the network, centrality derivatives can

be used to visualize the magnitude (saturation) and sign (hue,

red for negative and blue for positive) of the influence of a

given node. On top, we show the distribution of sensitivity

to a selected node (center of leftmost cluster highlighted in

blue). All other nodes are color-coded based on the sensitivity

to the selected node. We see two salient nodes in dark blue,

which indicate a high positive sensitivity, even though they

are not directly connected to the selected node. This prompts

the user to follow the links of these nodes (circled), and we

observe that the node is connected to the center of a cluster,

therefore acting as a critical bridge between the two clusters.

At the bottom, sensitivity-guided navigation helps us visualize

different clusters which are otherwise obscured by the layout.

After selecting one of the cluster centers, we see that the other

(possible) cluster centers exhibit a large negative sensitivity

(since they are “competitors” for importance). Selecting one

of these nodes highlights its local structure (seen as blue

nodes) and also highlights the other two cluster centers in

red. Without this interaction, the boundaries between these

intertwined clusters are difficult to define. As suggested by this

example, one can define a heuristic for navigating large graphs,

which dictates that one should follow the nodes with highest

sensitivity, either positive or negative, in order to quickly

traverse full regions without getting stuck in local structures.

5 EXAMPLES

Here we illustrate how we use centralities sensitivities to

improve the insight gained about three social networks. Inter-

active results and additional examples can be found online at

http://vis.cs.ucdavis.edu/software/NetZen.
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Fig. 8. Sensitivity-guided search and exploration of the

del.icio.us network. (a) A large group in the network ap-

pears as a connected cluster. (a1-3) Encoding sensitivity

as color (blue for positive, red for negative sensitivity)

helps the user recognize three distinct clusters inter-

twined together. (b) Sensitivity-guided navigation. (b1)

After selecting a node (center of blue cluster), we see

a salient node (circled) which has a strong sensitivity

even when not directly connected to the selected node.

This prompts the user to navigate further in the network

centering at that node (b2), to discover that the node

connects to an important cluster.

5.1 MIT Reality Dataset

The MIT Reality dataset collects information about one hun-

dred subjects from the MIT Media Lab and the School

of Management, using a series of communication devices,

powered with Bluetooth chips, throughout a period of about

2 years. The dataset contains several ways in which a social

network can be extracted, such as call and texting logs, as well

as proximity data. Here, we focus on the proximity data. In

this part of the data set, a link is created between two actors if

they were in close proximity to each other for a period of time.

One of the key questions that the MIT Reality group wants

to answer with the compilation and analysis of this data set is

whether the topology of the network can be inferred from the

proximity data alone, since it provides information that may

not be captured by tracking calls.

Indeed, when we plot the network using a force-directed

layout, we get the inevitable hairball. This is not surprising,

as most nodes are in close proximity to each other for some

period of time, and the vast amount of links forces the nodes to

clump together. This is depicted in Figure 9(a). Color coding

denotes the position held by the person, a simple identifier that

helps find clusters. Along this dimension, we clearly see a big

group in blue, corresponding of students of the Sloan School

of Management, and various groups in green, corresponding

to first year, graduate and senior students, as well as faculty

and researchers from the Media Lab. Unidentified actors are

represented in gray. Although we already know there is a

clear separation of roles (Sloan vs. Media Lab), the goal of

the analysis and the collection of the data is to find out if

this can be extracted by structural properties alone. Evidently,

it is difficult to observe such separation visually without

the semantic clues. We performed a centrality analysis, and

found that the two main clusters could be characterized by

the sign and magnitude of their sensitivities. Actors within

each group had positive influence to each other, while the

sensitivity with respect to actors in the other group was mostly

negative. Figure 9(b) shows the result after laying out the

graph considering only those edges that represent a positive

sensitivity. Certain layout algorithms, such as those based on

LinLog energy models, often extract clusters better [41]. In this

example, a LinLog layout results in an equivalent separation to

that in (b), validating the capability of sensitivities to retrieve

clusters.

We explored the data set further for those links with larger

sensitivity. If we “weaken” the edges with low sensitivity, a

graph layout algorithm starts revealing a hidden structure. In

Figure 9(c), we see that the two clusters behave differently.

The Sloan cluster remains tightly connected while the Media

Lab cluster begins to separate into three or four groups, one

of them consisting predominantly of first year students. This

strategy can be used to determine how tightly connected is a

visible cluster in a network and provides a simple, yet robust,

methodology for social network exploration.

5.1.1 Reasoning about Uncertainty

We expanded our analysis of this network to understand more

how centrality is distributed. First, we observed that several

centrality metrics provide different, often contradicting results.

This is not at all surprising, since centrality metrics are, in gen-

eral, defined differently. A node with a high degree may have

low betweenness if no shortest paths go through it. To this end,

we study the aggregate effect of sensitivities in the centrality

of each node. This can be approached from the perspective of

uncertainty analysis. As pointed out by Wasserman [47], social

network representations may not be an accurate depiction of

the underlying social structure. Moreover, biological networks

often include an inherent measurement error that cannot

guarantee complete accuracy. Therefore, every edge between

two nodes carries an inherent uncertainty that is propagated

through network operations, such as clustering, filtering and,

naturally, centralities. Let us define the uncertainty of a node

vi as the variance σi of its corresponding variable ti. We can

think of this uncertainty as the inverse probability of increasing

the degree of a node by one degree (i.e., adding or removing

a node). The uncertainty of the centrality of a node σC(ti) is

a linear combination of the uncertainties of these variables,

using the law of propagation of uncertainties:

σ2
C =

N

∑
i=1

(

(

∂C

∂ ti

)2

σ2
i +

N

∑
j=1

COVi j

∂C

∂ ti

∂C

∂ t j

)

(17)
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(a) (b) (c)

Fig. 9. Exploration of MIT Reality Data set (a) Force-directed layouts do not convey groups, except via semantic

attributes (blue for Sloan members, green for MediaLab members) (b) Considering only positive sensitivities, we see a

better separation between the two groups. (c) This becomes clear when filtering edges based on sensitivity magnitude.

The Sloan group persists, while the MediaLab splits into a small number of subclusters.

Fig. 10. Uncertainty visualization for centrality. Left:

overview of centrality metrics and uncertainty as area

error for Betweenness, Eigenvector and Markov central-

ities. Right: Detail uncertainty view, where each node

shows the scores for the three centralities, mapped as

size and color. Transparency encodes uncertainty. We

see a consistent trend of high uncertainty nodes in the

cluster on the left, with a mix of low and high uncertainty

nodes in the cluster on the right.

where σ2
i is the variance in the degree of a node and COVi j

is the covariance of the degrees of nodes i and j. If we

simplify the uncertainty modeling to describe each node as

an independent variable, the resulting uncertainty is just the

linear combination of the variances of each node.

Figure 10 shows an uncertainty analysis of the MIT prox-

imity data set for three centralities: betweenness, Eigenvector

and Markov centralities. On top, we plot the distribution of

centrality for all nodes (in descending order) as a uncertainty

area curve, where the area represents variance. We first notice

that Markov centrality is more robust than the other two

metrics, since it looks at the long term stability of random

walks, more sensitive to variation than betweenness, which

is prone to short-circuit errors. This confirms the observation

by Carpenter et al. [11] about betweenness. Figure 10-bottom

shows a detailed view of uncertainty. Color indicates centrality,

while transparency indicates uncertainty. More uncertain nodes

are more transparent. We notice that the sloan cluster on the

left has a consistent behavior of relatively unimportant nodes

with high uncertainty. We also identify certain nodes with

low uncertainty in the MediaLab cluster (right). Although

not the most important, they are the most reliable. These

uncertainty views are useful to predict the expected behavior

of nodes in a dynamic network. As nodes disconnect and

reconnect from their neighbors, the centrality of certain nodes

will undoubtedly change. With these plots, we can predict

where these changes are most likely to occur. For example,

according to the Eigenvector centrality, a change in the degree

of nodes is likely to change the centrality of the nodes in the

bottom part of the plot (which happen to be members of the

“Sloan” group), while the central nodes in the rightmost cluster

(“Media Lab”) are more likely to remain constant. We see a

few exceptions in the Media Lab cluster, where the variance

of the Eigenvector centrality is high. Further inspection shows

a different role of these people (they are not students or “new

grads”), which may hint at the source of this disparity.

5.2 Genealogy of Influence

The genealogy of influence is a network compiled by Mike

Love [25], that describes the intellectual influence among

the works of great thinkers in History including renowned

artists, writers, mathematicians, philosophers and scientists.

Although the network was built synthetically after studying

what are deemed to be the most influential works for each

person, the network has traits of a social network. This is

manifested by the typical hairball in Figure 11(a). Identifying

meaningful clusters is practically impossible. We have applied
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Fig. 11. Visualizing the genealogy of influence network. (a) Traditional visualization prevents users from identifying

any meaningful group (b) A simplified network using Eigenvector centralities allows us to see individual clusters (c)

Close-up views of two highlighted clusters (d) The same clusters, in an unfiltered visualization, are hard to identify.

(a) (b) (c)

Fig. 12. Visual reasoning for the astrophysics collaboration network. (a) Sensitivity-guided radial layout showing only

positive sensitivities helps us identify clusters and their connections. The use of hierarchical edge bundling helps us

make sense of the multitude of connections. (b) The same layout showing the links with negative sensitivity highlights

the core network formed by the nodes with higher co-authorship. (c) Layouts without a sensitivity augmentation often

produce visualizations where clusters cannot be easily identified, as seen for the orange and yellow groups (top:Linlog

layout bottom:mass-spring layout).

our approach to look at meaningful relationships in terms

of sensitivity. We then applied the filtering approach based

on the minimum spanning tree of the Eigenvector centrality.

The resulting visualization is shown in Figure 11(b), and we

begin to see emergent clusters. To retain the original edge

connectivity, we use a hierarchical edge bundling strategy to

group links together and avoid excessive clutter [22]. The

bundles are routed through the hierarchy computed in the

minimum spanning tree. We highlight two clusters. One of

them, in orange, is a cluster of Russell and highlights the well-

known connections with mathematicians and logicians such

as Godel, Quine and Whitehead. We even see the connection

to Vico, a philosopher from the seventeen hundreds that

inspired mathematicians such as Russell. This connection is

hard to identify from the original visualization (Figure 11-

d). Although this cluster can be found in close proximity in

an unaugmented visualization, it would not stand out visually

as a single coherent group. When we consider the cluster

highlighted in magenta (Husserl group), these connections are

even more difficult to identify together without filtering. The

overwhelming amount of nodes connected to the most central

ones creates a hairball where the locations of nodes become

increasingly arbitrary.

5.3 Astrophysics collaboration network

This data set contains the collaboration network of scientists

publishing abstracts on the astrophysics e-print archive (arXiv)

between 1995 and 1999 [39]. A link between authors is

created if they are co-authors of an abstract. Figure 12 shows

a sensitivity-guided visualization of the network. We follow

the general strategy of simplifying the network in terms of

sensitivity. First, we obtained the minimum spanning tree of

the network using the derivatives of Eigenvector centrality as

weights. The resulting tree is visualized using a radial layout,
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where nodes higher in the MST hierarchy are positioned closer

to the center of a circle, while leaf nodes are farther from the

center. After this, we represent the original edges from the

graph using a hierarchical bundling technique similar to that

of Holten et al. [22]. The result is shown in Figure 12(a), with

edges representing those links with higher positive sensitivity.

We see the emergence of interconnected clusters. In Fig-

ure 12(b), we visualize the links with high negative sensitivity,

which helps us see the core network, formed by highly central

nodes. In traditional layouts, without considering the effects

of sensitivity, these nodes are inevitably collapsed together at

the center of the layout, as seen in Figure 12(c) for the linlog

(top) and force-directed layouts (bottom). We also see that the

more evident clusters are well represented in all three types of

layouts (clusters in purple and magenta), while other groups of

nodes, for example the co-authorship networks of Filippenko

(orange) and Stetson (yellow), are not evident at all in force-

directed layouts, and not clearly separable in linlog layouts.

In a sensitivity-guided visualization, these clusters appear as

separate groups. By following the bundled edges, we can still

make sense of the connectivity of these two clusters with other

groups. Note that sensitivity-guided strategies can be applied

to other layouts and they are not intended as a replacement

of a good layout. However, these strategies suggest to us that

we should exploit the implicit hierarchy given by MST and

the centrality ranking of nodes. Layouts that exploit these

properties, such as the radial layout, are likely to produce

better diagrams. Although simplification is not new here,

the use of sensitivity provides a robust mechanism to obtain

the critical links in terms of the dynamics of the network.

Preservation of centrality is ideal to identify the representative

actors in a cluster and it turns out to be useful when using

visual representations intended for hierarchical structures, such

as radial layouts and edge bundling.

6 DISCUSSION

We have shown a number of applications of the centrality

derivatives for the visualization of social networks. The net-

works used in this paper are summarized in Table 1.

Centrality operations, however, are often costly. For exam-

ple, betweenness centrality can be computed in O(||V ||||E||+
||V ||2) time for unweighted graphs, or, when using the Floyd-

Warshall algorithm, in time O(||V ||3) [7]. Approximating the

derivative using finite differences implies increasing the cost

by a factor proportional to O(||V ||). Brandes presented a

fast approximation of betweenness centrality [6] that runs

in O(||V ||||E||) for unweighted graphs. Using such an im-

plementation, the evaluation of derivatives using finite dif-

ference approximations is more feasible. For the case of

eigenvector centralities, the costlier operation is the solution

to the eigenvector problem. A number of acceleration tech-

niques have been proposed, as surveyed by Langville and

Meyer [36]. The derivatives only imply an additional ma-

trix multiplication, or equivalently, solving the linear system

of equations in Eq. (9). Table 1 shows a comparison of

timing among different techniques for computing sensitivity,

including betweenness derivatives using finite differences and

Eigenvector sensitivities using analytic derivatives. We see

that for moderate graphs, numerical approximation becomes

impractical and analytic derivatives can be computed an order

of magnitude faster. As a way to compare the complexity of

Eigenvector sensitivities, we also show the time complexity

of edge betweenness using Brandes’ fast algorithm [6]. For

sparse graphs, this fast implementation proves much faster

than computing sensitivities. However, edge betweenness does

not account for indirect influences between nodes, for which

a complete graph is required, e.g., one computing all pairwise

distances. We see that as graphs become complete, edge

betweenness and the Eigenvector analytic derivative can be

computed at the same cost. Nonetheless, analytic derivation

is highly parallelizable. A simple multi-threaded version of

the algorithms proves faster than other alternatives for dense

graphs. Markov centralities are probably the most expensive,

which are O(||V ||3), due to the computation of an inverse

matrix during the estimation of the fundamental matrix. In this

sense, the use of analytical derivatives become advantageous,

since they can be computed as a constant sequence of matrix

products. In contrast, a numerical approximation using central

differences would require time O(||V ||4), which is impractical

even for relatively small networks. Harrison and Knottenbelt

describe a method for approximating the first passage time

and its derivatives using a novel Laplace transform [20]. We

believe methods like this would greatly improve the scalability

of our approach. Given the complexity of social networks,

neither the analytic expressions for centrality derivatives nor

their linear approximations can be applied directly to large net-

works. Although they are useful for local analysis of the social

network (considering sub-networks at a time), more effective

means are necessary. One may perform a similar analysis as

the one presented in this paper for known approximations of

the centrality measures or apply a hierarchical solution that

works locally in sub-networks at a time and progressively

expands to larger portions of the network.

7 SUMMARY AND FUTURE WORK

Several researchers have stressed the importance of coupling

statistics and visualization to improve the exploration of large

networks. This has been capitalized upon by recent attempts to

produce effective visualizations based on statistical measures

such as centrality. These efforts resulted in insightful color and

shape encodings of nodes in social networks, radial layouts

and graph simplifications. However, none has considered the

variational aspects of these centrality metrics, essential for

understanding the process by which a given node becomes

important. In this paper, we presented a general methodology

to extract the sensitivity of centrality and apply it to typical

visualizations of social networks. The quantification of sen-

sitivity is addressed in this paper as an analytical derivative,

following our variational description of the social network. We

show that multiple tasks in visual reasoning can be supported

with this new type of information. Overviews show friend-

ship and enmity relationships, useful for characterizing the

cooperation or competition within networks. Filtering can be

supported in a more effective manner, as sensitivity provides
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Graph Num. nodes Num. edges Edge Betweenness Betweenness Derivs. Eigenvector Derivs Eigenvector Derivs. MT

friendster (core) 129 161 0.012258 0.281917 0.036193 0.017957
apache (core) 51 856 0.006538 0.110089 0.00884 0.009227
influence 514 2132 0.176664 24.1369 0.656055 0.527134
MIT 64 2964 0.01434 0.284446 0.011967 0.015476
apache 511 1796 0.190487 27.62803 0.629286 0.468059
flickr 1425 2848 1.089283 276.8418 16.351770 12.328721
bo 1458 3896 1.382473 494.611816 17.584723 12.983744
del.icio.us 1503 6032 1.454253 517.889404 18.858734 14.469767
astro-ph 955 37554 1.460922 610.64679 5.552344 3.567967
kazaa 1550 8028 2.104503 1069.565674 20.876854 16.481899
complete200 200 19900 0.202467 19.190643 0.203148 0.095947
complete500 500 124750 3.570290 752.1272 3.043994 1.348568

TABLE 1

Network properties for the data sets used in this paper and comparative timing for several techniques (seconds).

a robust mechanism to simplify the network, and bottom-up

approaches, such as search and expand on demand, can be

improved by representing the relative importance of actors

with respect to a given focal node.

While we have shown important applications of this work

for social and other scale-free networks, our analysis can be

applied to network analysis in general. Since the notion of

sensitivity is based on the immediate change in the degree

of a node, we believe our approach can provide insight on

the behavior of dynamic graphs as well. Just as the addition

or removal of edges may change the centrality of a node,

sensitivity coefficients provide hints about how drastic are

those changes and let users find the most reliable nodes or

communication channels. Our approach is not restricted to

the particular metrics used throughout this paper. We focused

on common centrality metrics, which span a vast selection

of algorithms, based on shortest-paths, feedback and Markov

processes, but our general notion of sensitivity applies to other

centrality metrics, such as closeness centrality and radiality.
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