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Abstract—This paper presents a study of gradient estimation methods for rendering unstructured-mesh volume data. Gradient
estimation is necessary for rendering shaded isosurfaces and specular highlights, which provide important cues for shape and depth.
Gradient estimation has been widely studied and deployed for regular-grid volume data to achieve local illumination effects, but has
been otherwise for unstructured-mesh data. As a result, most of the unstructured-mesh volume visualizations made so far were unlit.
In this paper, we present a comprehensive study of gradient estimation methods for unstructured meshes with respect to their cost
and performance. Through a number of benchmarks, we discuss the effects of mesh quality and scalar function complexity in the
accuracy of the reconstruction, and their impact in lighting-enabled volume rendering. Based on our study, we also propose two
heuristic improvements to the gradient reconstruction process. The first heuristic improves the rendering quality with a hybrid algorithm
that combines the results of the multiple reconstruction methods, based on the properties of a given mesh. The second heuristic
improves the efficiency of its GPU implementation, by restricting the computation of the gradient on a fixed-size local neighborhood.

Index Terms—Volume rendering, Gradient estimation, Local lllumination, Unstructured meshes, Flow visualization.

1 INTRODUCTION

IGHTING plays an important role in volume rendering.

On one hand, shading and specular reflections provide
important cues of shape and depth. On the other hand,
diffuse shading along the contours of an isosurface helps
disambiguate the overlapping structures that are common in
semi-transparent rendering. For example, Fig. 1 shows the
result of applying local illumination to two volumes sampled
in unstructured meshes. On the left, lighting helps discover
turbulent patterns that are lost in the unlit image. On the right,
lighting helps elucidate the spatial relationships between the
occluding isosurfaces. Without it, isosurfaces appear flat with
no apparent depth disambiguation.

To properly apply local illumination to a 3D volume, we
must estimate the gradient of the volume accurately at ev-
ery single point, while hiding the effects of mesh resolution,
which introduce undesired artifacts. Gradient estimation is
well known and understood for regular grids, and its ap-
plication is now part of commodity visualization systems.
Due to the structured nature of regular grids, estimating the
gradient is a rather simple task. The partial derivatives of a
function with respect to the X,Y and Z dimensions are easily
approximated using finite differences given the alignment of
a voxel neighborhood with each of the axes. Unstructured
meshes do not provide the same advantage. Usually based on
finite element methods, these grids are used to discretize a
scalar or vector field within a closed volume using a variety of
cell types, such as tetrahedra, hexahedra and prisms. The use
of cells of varying shape and size enables a better fit of the grid
with complex geometries and adaptive refinement in regions
of interest. Unstructured meshes, with the exception of an
unstructured cloud of points, contain connectivity information
that may be used to compute the gradient. However, it is not as
straightforward as in regular grids. First, connected vertices do
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not align with the main axes, suggesting a variable contribu-
tion to each component of the gradient. Second, unstructured
meshes usually contain elements of varying shape, where one
dimension is better sampled than the others. The traversal of
this connectivity is somewhat costly when compared to the
convolution step usually required for structured grids. Even
with no connectivity, computing a stencil around a given point
demands a spatial search that may vary in size. For this reason,
local illumination of unstructured-mesh volume data has been
largely ignored. A simple mechanism would be to impose
a regular grid and re-sample the volume accordingly, but it
results in sampling problems. Re-sampling an unstructured
mesh into a 3D regular grid at the Nyquist rate might result in
very large volumes that exceed the available system or graphics
memory.

In this paper, we present a comparison and quantitative
analysis of the most prominent methods for linear gradient re-
construction for the purpose of lighting. Although higher order
elements are becoming increasingly available, linear elements
are still the most common representation for unstructured
meshes, particularly for hardware accelerated rendering sys-
tems. The cost of storing and rendering higher order elements
has not made it possible to render them at interactive rates in
current graphics processing units. Understanding the factors
that affect the quality of volume rendered images in linear
unstructured meshes not only improves current visualization
systems, but also paves the way for similar studies of higher
order meshes.

We make the following contributions: (1) We present a
comprehensive comparison of linear gradient reconstruction
methods on unstructured meshes. Our systematic approach
decomposes the accuracy of the gradient as the product of
different factors, such as mesh resolution, element shape and
complexity of the scalar field. Our experiments suggest simple
guidelines for applying the appropriate method for a given
unstructured mesh to produce high-quality volume rendered
images. To the best knowledge of the authors, this is the
first attempt to obtain a comparison of the different gradi-
ent estimation methods from the visualization standpoint. (2)
Based on our results, we present two heuristic improvements.
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Fig. 1. Effect of lighting in unstructured-mesh rendering for two data sets. Left: Lighting helps discover turbulent structures in the
vicinity of the wing that appear flat otherwise. Proper gradient estimation should highlight these shapes without adding extraneous
artifacts. Right: Lighting also helps understand the spatial relationship between different occluding isosurfaces. With lighting, the
actual shape of the semi-transparent isosurfaces can be easily perceived even in the presence of overlapping surfaces.

Hybrid gradient reconstruction improves the visual quality
by applying different methods in a single mesh according to
a given quality metric. In our experiments, regression-based
methods behave better for irregular elements in comparison
to methods based on averaging, and vice versa for regular
elements. This suggests that the choice of method should
follow the local mesh quality instead of being applied globally.
Fixed-size neighborhood gradient reconstruction is another
heuristic that ranks the neighbor vertices of a given point so
that the gradient can be reconstructed as accurately as possible
without incurring in much overhead.

2 RELATED WORK

Volume rendering of unstructured meshes has become an im-
portant tool for understanding computational fluid dynamics
and mesh discretizations of PDEs. The most predominant ren-
dering approaches are cell projection [27], point-based approaches
[32], [34] and raycasting [11], [30]. For its simplicity, some practi-
tioners re-sample the unstructured mesh into a regular grid and
render this grid directly [29], [31]. GPU-based implementations
of these methods exist [9], [18], [30]. Cell projection and point-
based approaches, often classified as object-order approaches,
do not require an explicit connectivity of the cells. However,
they require visibility sorting. Image-order approaches, such
as raycasting, do not require visibility sorting, but they require
the connectivity information to traverse the cells along the view
rays. In this paper, we use raycasting to test our results and
provide a visual comparison. Our implementation is based on
the ones by Garrity [11] and Weiler et al. [30]. The methods de-
scribed in this paper and the results of our evaluation, however,
are applicable to both object- and image-order approaches.
The study of gradients in unstructured meshes can be
understood from both the simulation and the visualization
standpoints. In simulation, the study of gradient reconstruc-
tion methods leads to more accurate reconstructions of an
underlying scalar function and better error bounds for the
discretization of PDEs. Most of these studies rely on meth-
ods based on linear regression and the Green-Gauss theorem
[71, [19], [17]. Aftosmis et al. discuss the behavior of linear
reconstruction methods on unstructured meshes [3]. In their
studies, Barth [7], Mavriplis [17] and Anderson [5] found that
inverse distance weighting has a significant impact on linear
regression models for gradient estimation, while methods such
as Green-Gauss degrade. In an attempt to improve the er-
ror bounds of gradient reconstruction, Shewchuk studies the
impact of cell shape in linear reconstruction and provides a
series of quality metrics for tetrahedral cells [26]. Petrovskaya

[25] and Apel et al. [6] also study the impact of cell shape
in reconstruction algorithms. While there is no consensus on
what is a good mesh element, these studies suggest that
these methods produce noticeable differences in the gradient
reconstruction as the mesh becomes more irregular. In this
paper, we aim at validating some of these findings from the
rendering standpoint.

In visualization, gradient estimation becomes important as
shading is an essential cue for shape. For geometric objects,
such as triangle meshes, normals to the surface can be com-
puted directly from the geometric representation. Volume rep-
resentations, however, do not encode explicit geometry but are
sampled in a grid or an unstructured mesh. The gradient is
not computed directly from the geometric information, but
requires the consideration of the volume data. Yagel et al.
surveys these methods for structured grids and classifies them
into image-space and object-space methods [33]. With the ad-
vent of fast graphics processors, object-space methods became
the norm. Moéller et al. compare normal estimation schemes
from the point of view of the quality of the reconstruction
filter [20]. A similar study is carried out by Bentum et al.
in the frequency domain [8]. In the spirit of generalization,
Thiirmer and Wiithrich consider the normal computation in 3D
space as an approximation resulting from sampling a spatial
neighborhood of each point, and describe the importance of
variable weighting of each sample [28]. Neumann et al. also
consider the problem around a neighborhood and pose the
problem as 4D regression [22]. Although these two methods
were described for structured grids, their derivations also
apply to unstructured meshes. While not designed for volume
rendering, the need for reconstructing smooth functions from
unorganized points has emerged in the point-based rendering
community. Estimating the gradient to a surface has been
posed as a total least squares problem [12] or a moving least
squares problem [24]. Similar techniques can be applied when
we consider an unstructured mesh as a collection of points.

Cell-based gradient estimation was proved useful in visual-
ization to speed up the sampling of the scalar fields at arbi-
trary points within a cell. This was first proposed by Garrity
[11], who estimated the constant cell gradient via a linear
approximation. This was later used by Weiler et al. in GPU-
based raycasting [30]. A constant cell gradient, however, is not
adequate for lighting, and node-centered gradients are needed.
Cignoni et al. use the average of the gradient of the incident
cells to compute the gradient at a node [10], and use it to render
shaded isosurfaces. Ma et al. compute the gradient based on
an approximation of the Green-Gauss theorem [15], which was
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later modified by Meredith and Ma, who use the directional
derivatives of the scalar field to obtain a fast approximation
[18]. Levy et al. use unweighted linear regression to estimate
the normals [14]. We show that weighted regression provides
a better estimate of the gradient than unweighted schemes. In
recent approaches, the lack of lighting is compensated with
opacity transformations, which result in an appearance similar
to shaded isosurfaces [21].

This heterogeneity of methods in both the simulation and
the visualization communities demonstrates that there is no
consensus on what are the most adequate methods for adding
lighting to volume data in unstructured meshes. In this paper,
we provide a quantitative and qualitative evaluation of the
most prominent linear gradient reconstruction methods. We
seek to guide future generations of unstructured mesh visu-
alization systems towards high-quality volume rendering.

3 LINEAR GRADIENT RECONSTRUCTION

Let us define an unstructured mesh as a collection of connected
points x that discretize a scalar field f. The linear approxima-
tion of this function at a given point xo + h is given by

f(x0+h) = f(x0) + Vf(x0) - h+O(||h]]*) 1)

where V(f(xo) is the gradient at point x¢ and h is a discretiza-
tion step. The goal of gradient estimation is therefore to recover
the function Vf such that Eq. (1) holds for any given point.
Because the approximation is linear, these methods are collec-
tively known as linear gradient reconstruction methods. We
can further classify these methods into two groups: averaging-
based methods, which construct the gradient as a weighted
average of the neighboring gradients, and regression-based
methods, which posit Eq. (1) as a least squares problem.

To understand the sources of error in these methods, we
can expand the second term of the linear approximation. The
residual of ro = f — f, where f is the linear approximation of
f,is

I i 3
r2(xo +h) = Zrh V2 f(x0)h + O(|h|[) @)

where V2 f is the Hessian matrix of f. Furthermore, the abso-
lute error can be bounded as:

72l < [RPIIV2(fE ¢, )] ®)

for some (£,¢,n)" € (%0, %0+ h). Therefore, linear approxima-
tion methods are both dependent on the mesh discretization
and the complexity of the scalar field. This is true for both
structured and unstructured meshes. Unlike structured grids,
unstructured meshes have a variable discretization distance
h. Therefore, the shape of the mesh element is also a factor.
Numerous quality metrics have been proposed for tetrahedra,
as described in [26]. The study of these metrics, of which the
most common are aspect ratio and the ratio of the inscribing
sphere and maximum edge length, has led to tighter bounds
on the approximation error [6]. Here, we are not concerned
about these bounds, but rather in the effects of the different
factors in the volume rendered image. Mavriplis showed that
regression-based methods provide better estimates on irregular
elements rather than averaging-based methods [17]. Shewchuk
also notes that this effect has been misunderstood as due to
elements of poor aspect ratio, but argues that it is the presence
of large angles that results in larger approximation error. In our
visual analysis, we show how the different methods behave
differently depending on the element shape.

3.1 Averaging Based Methods

In this family of methods, the gradient is computed as a
weighted average of functions of the gradient or scalar values
at a neighborhood around a node. In general, this can be
expressed as the linear combination

Vf(xo) = Z w;V f(4) 4

where w; is a weighting factor, and Vf(i) is the constant
gradient at a cell . The gradient at a cell can be computed
by considering Eq. (1) for the 4 vertices of a tetrahedron, here
denoted as column vectors xo, X1, X2 and x3, resulting in the
3 x 3 linear system

(x1 —%0) " f(x1) — f(xo0)
(x2—x0)" | Vf=| f(x2)— f(x0) )
(xs —x0) " J(x3) — f(x0)

The left hand side consists of a 3 x 3 matrix where each row
is a displacement and the three columns are the components
in each of the spatial dimensions. The right hand side is a
column vector of scalar differentials. This system can be solved
exactly for non-degenerate tetrahedra, i.e., tetrahedra that do
not collapse into a plane, a line or a point.

3.1.1 Cell Weighting

Since the cells around a given vertex are not of the same
shape, the weighting factors w; can be computed to give higher
importance to those cells that should contribute more to the
average gradient (Fig. 2(a)). Here, we consider four methods:

Uniform. This is the case when all cells are weighted uni-
formly. This method is the most commonly used in volume
rendering due to its simplicity, but does not adapt to meshes
of varying shape.

Volume. Each cell is weighted according to its own volume.
Although it adapts better to meshes of varying shape, some
elements may exhibit small aspect ratio while having the same
volume of other more regular elements. Later on, we show that
this method is equivalent to obtaining the gradient using the
Green Gauss theorem.

Solid Angle. A cell is weighted by the solid angle subtended
by the cell at the central vertex xo, measured as the surface area
of a unit sphere covered by the opposite face to vertex xo.

Inverse centroid distance. Each cell is weighted by the
inverse of the distance between the central vertex xo and the
centroid of cell .

3.1.2 Green-Gauss Method

A different derivation of the gradient is obtained using the
Green-Gauss theorem, which states that for a volume 2 en-
closed by a surface S,

/ VfdQ= | fndS (6)
Q o9)

where n denotes the outward pointing normal vector to the
surface S, as shown in Fig. 2(b). In an unstructured mesh, the
average gradient at a node can be approximated by

1
Vf(xo) =~ — fndS (7)
1] Jaq
1 _
o — fins (8
o2 !

The first approximation replaces the volume integral of the
region enclosing the vertex by the total volume. The second
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(a) Cell Average

(b) Green Gauss

(c) Regression (d) Meshless

Fig. 2. Overview of the gradient estimation methods. (a) Weighted average of the neighboring cell gradients. Typical weights are
volume, solid angle ¢; or inverse centroid distance 1/||c; — x¢||. (b) The Green Gauss method approximates the gradient as the
surface integral of the control volume . (c) Regression fits a plane for the gradient based on the contribution of the direct neighbors
of vertex x. (d) Meshless methods apply regression on scattered points in a spatial neighborhood (e.g., a sphere of radius ).

approximation is done over the surface integral using the
trapezoidal rule on each of the faces \S; defining the surface. n;
denotes the outward pointing normal vector of the face S;. The
scalar value at a face, 71., is obtained as the linearly interpolated
scalar value at the barycenter of face S;.

We can see that the Green Gauss method is equivalent to
computing the volume weighted cell average gradient. Let us
define the volume integral of the gradient in a neighborhood
of cells around a central vertex xo. Assuming that the gradient
at the cell is constant [3],

/QVfdQ

Z:va)A;dQ ©)
Zwum

(10)

where V; is the volume of cell i. That is, if we convert each
element volume integral into an element Green-Gauss surface
integral, the contributions from shared internal faces will cancel
out in the summation over the entire region, resulting in the
Green-Gauss approximation.

3.2 BRegression Based Methods

Another family of methods can be derived from Eq. (1) by
fitting a hyperplane that best satisfies the equation for a
number of sample points, as depicted in Fig. 2(c). In the case
of node-centered gradients, Eq. (1) can be generalized to an
over-constrained system of equations.

(x1 — %0) T F(x1) — £(xo0)

(x2 —x0) " f(x2) — f(xo
Vi o= | (1)

(ck — x0) 7 F(xk) — f(xo)
(12)

where x1, ..., x; are the vertex neighbors of vertex xo. Equiv-
alently, this system can be expressed in matrix form,

XVf = b 13)

where X is a k x 3 matrix whose columns are the displacement
of each vertex in the spatial dimensions, and b is a column
vector of dimensions k x 1 of scalar value differentials. The
problem can be solved using linear least squares.

As can be seen, this method extends naturally to arbitrary
element shapes and neighborhoods. In particular, considering

all the vertices in a spatial neighborhood of xo leads to a
meshless gradient reconstruction scheme. The same cannot be
said about averaging methods. As pointed out by Mavriplis,
the Green Gauss approximation is generally not exact for
discretizations other than tetrahedra [17], although different
control volumes can be defined for such cases.

3.2.1 Weighting

To account for the unstructured nature of the mesh, regression-
methods can be modified to add weights to each of the vertex
neighbors. Let w; denote a weighting factor associated with
vertex x;. The gradient reconstruction can be posed as the over
constrained system:

WXVf = Wb (14)

where W = diag{w;} is a k x k diagonal matrix containing the
weights of all k£ neighbors of vertex x,. The solution to this
system can be computed using weighted least squares, solving
the 3 x 3 system

XWXV =X"W’b (15)
With regards to weighting, we consider two cases: unweighted
regression, for w; = 1, commonly used in volume rendering,
and inverse distance weighted regression, in which case w; =
m, where || - || denotes the Euclidean norm of a 3D
vector. Mavriplis showed that, in general, weighted regression
provides better estimates than unweighted regression, espe-
cially for irregular elements [17]. We can see this in the norm
of the matrix in Eq. (15). The matrix is inherently dependent
on the element shape. For irregular elements, the difference
in edge lengths generates a large conditioning for the matrix.
For unweighted regression, the determinant of X ' X grows as
O(||h||) (since it grows as the cube of the elements in the
matrix, which are O(||h||?)) and the problem is ill-conditioned
for nearly coplanar cells. Weighting using inverse distance
cancels out the dependency on the shape of surrounding
tetrahedra, and the determinant of X W?2X grows as O(1), so
that it is less sensitive to near-coplanar cases. This difference
in accuracy was observed in our experiments and is consistent
with previous results [17], [25].

3.2.2 4D Regression

As an alternative to 3D regression, Eq. (1) can be formulated as
a 4D regression problem, as suggested by Neumann et al. [22].
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Fig. 3. Example synthetic data sets for N = 16 and increasing irregularity factors. We render the volume with constant interpolation

through the cells to highlight the shape of the mesh elements.

In this case, the scalar value at a given vertex is considered as
an unknown along with the gradient, and results in the 4 x 4
system of equations:

(x1 —%0) " f(x1)

(xz2—x0)" 1 vi 1| fx2)
: { J(x0) ] N :

(xk—x0)" 1 f(xx)

The solution contains the gradient and also a filtered value of
the scalar at that point. Unlike 3D regression, weighting based
on inverse distance is not as effective, since the last column of
ones gets replaced by the inverse distance, which may be large
for irregular elements.

3.2.3 Meshless Regression

In general, if we consider all points in the neighborhood
of a given vertex, the regression method does not need the
explicit mesh connectivity anymore. This observation has led
to meshless reconstruction methods, such as the raycasting
method presented by Ledergerber et al [13]. According to this
method, a scalar function f can be approximated as the linear
combination of a set of basis functions:

Fx) = g(x) " ex

where g is a set of basis functions and cx is a set of coefficients,
found using regression. For linear approximations, i.e., g(x) =
[z,y,2,1]" or g(x) = [,y,2]", the result is equivalent to 4D
and 3D regression, as described above. The coefficient is then

(16)

—1
Cx = (XTWQX) X W2b 17)
The gradient can then be obtained as the partial derivatives of
this function with respect to the spatial coordinates, as pointed
out Ledergerber et al [13].

i
agf:) _ 5'55_:) ox +8(x) 5 (18)
_ 9g(x) "
o al'k x
2
() AR (6;6(:‘) x - X W0) b)

where A(x) = X' W?(x)X. Lederberger et al. point out that
the first term of this derivative is a good approximation of

the gradient. For the case of linear basis functions, the result-
ing derivatives are the coefficients corresponding to the basis
functions x, y and z. Therefore, approximating the gradient
using the first term of the derivative of f is equivalent to
the regression methods shown in the previous sections. In
the evaluation sections, we compare meshless methods with
those based on an explicit mesh while varying the size of the
neighborhood.

4 [EVALUATION

As shown in the previous section, the accuracy of the gradient
reconstruction filter depends on both the resolution of the mesh
and the complexity of the scalar field. In addition to resolution,
the shape of the mesh also contributes to the accuracy. We ran
a series of experiments to measure the effect of the choice of a
particular gradient method on the accuracy of reconstruction,
according to a given variable. The variables we consider are:
(1) mesh resolution, defined as the discretization distance of a
regular grid, (2) irregularity factor, defined as the maximum
deviation of the vertices from the regular grid, (3) element
shape, defined as the maximum aspect ratio of the elements
in the mesh and (4) complexity of the scalar field, measured
as the maximum magnitude of the Hessian of the scalar field.

4.1 Experimental Data Sets

Our experiments consist of both synthetic and “real” meshes.
The synthetic mesh benchmark consists of a series of meshes
obtained from a regular grid. We control two variables: the
size of the grid, IV, which indicates the discretization distance
|lh|| = 1/N, and the irregularity factor §, which indicates a
maximum random deviation of the vertices in the mesh from
the grid points. The grid is then defined as a collection of points
(connected using tetrahedral elements) defined as:

Xijk = (i +72(8), 5 +ry(6),k +r:(6))h (19)

for 4,5,k € {1,...,N}. Functions r;(a),ry(a),r.(a) are ran-
dom number generators in the interval [0,a]. For § = 0, the
mesh is a regular grid. Fig. 3 shows four example meshes for
N = 16 and different values of 4. In our experiments, we tested
40 of these meshes, for sizes N = {8,16,24, 32,40, 48, 56,64}
and deviation factors § € {0.0,0.125,0.25,0.375,0.5}. Al-
though 0 makes the elements deviate from the grid, they are, in
average, close to regular. To model highly irregular elements,
we created a subset of these meshes where the z dimension is
scaled down by a decreasing factor. This generates a series of
elements of small aspect ratio and large angles as the element



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

" Uniform —e— " Uniform —e— Uniform —e— |
Volume Volume Volume
0.07 Solid Angle o 7 0.07 - Solid Angle e 0.085 | Solid Angle e
Inverse Centroid < Inverse Centroid < Inverse Centroid <
0.06 0.06 0.03
0.05 0.025 -
S oo 8 & oo
= = = al
0.03 | 0.015
g
0.02 \ 0.01 e
o - o
& _ _— e
N —~_ " e 8
0.01 T e S I S e 0.005 e
D P . s s . ol D o Lot ‘ ‘ ‘
8 16 24 32 40 48 56 64 8 16 24 40 48 56 64 0 0.125 0.25 0.375 0.5
Size Size Irregularity factor
0.08 - : : : - : : 0.08 [ : — : 0.04 — —
\ 3D Unweighted —=— o \ 3D Unweighted —=— 3D Unweighted —=—
\ 3D Weighted \ 3D Weighted 3D Weighted
0.07 \ 4D Unweighted - 1 0.07 \ 4D Unweighted - 0.035 [ 4D Unweighted ---o-
\ 4D Weighted E \\ 4D Weighted 4D Weighted e
0.06 \\ 1 0.06 0.03
0.05 0.05 0.025
(E)J 0.04 15 qu 0.04 E MUJ 0.02
= R = H s .
~ 5
0.03 0.03 T 0.015
8 —_ 8
0.02 5 e 0.02 - 0.01
ey T 8 8
0.01 o : 0.01 . o1 0.005 5
s o .
oL . . . 0 . . . . 0 Le& . . . .
8 16 24 32 40 48 56 64 8 16 24 40 48 56 64 0 0.125 0.25 0.375 0.5
Size Size Irregularity factor

Fig. 4. Gradient reconstruction accuracy (MCE) in terms of mesh resolution and regularity for a spherical scalar field. Top: Average
weighting methods, for two meshes of decreasing regularity. Error decreases quadratically with mesh resolution, and linearly with
irregularity (right). For a regular mesh (§ = 0), the error is very small, but non-zero. Bottom: Regression-based methods. Notice the
disparity between 3D weighted and unweighted regression. Weighting has little effect for 4D regression.

shape approaches a plane. For scalar fields, we used two types
of analytical functions. A spherical function in a unit cube
(with bounding box from (0,0,0)" to (1,1,1)", defined as
f(x) = ||x—(0.5,0.5,0.5) ||, and the Marschner-Lobb function,
as defined in [16]. These scalar functions allow us to evaluate
the accuracy of the gradient reconstruction methods as we can
find the ground truth gradients analytically. To validate our
results in “real” datasets, we compiled a series of meshes from
flow simulation and tetrahedralizations. Both types of meshes
contain a mix of low and high quality elements. For CFD
simulations, the use of elements of varying shape allows the
mesh to align to the flow. For tetrahedralized models, irregular
elements are required to adapt the mesh to the shape of the
enclosing surface. Table 1 summarizes the datasets compiled
for our experiments and their corresponding statistics.

4.2 Quality Metrics

To measure the quantitative accuracy of each method, we use
the mean cosine error (MCE), defined as follows:

N
F O cos i
- COSs n; -n;
N <

=1

where n; and n; are the exact and estimated normals at a
given point, respectively. One of the problems with this metric
is the inability to represent the variance of the samples. For
this reason, we derived a correlation metric, based on the
contribution of the gradient to lighting. In this case, we define
a random variable as the diffuse component of a point with a
directional light at 1 = (1,1,1), and then used the Pearson
coefficient as the quality metric between the ground-truth
diffuse component, n; -1, and the approximation resulting from
a gradient approximation, f; -1 . This helps us detect different
degrees of variability among the reconstruction methods.

MCE =

N =28

N =16 N =24 N =32

Fig. 5. Visual comparison of inverse centroid weighted average
(top) and unweighted 3D regression (bottom) for meshes of in-
creasing resolution and irregularity factor § = 0.25. Unweighted
regression results in a bumpy appearance and the mesh ele-
ments are evident when compared to averaging.

4.3 Effects of Mesh Resolution

In the first experiment, we generated a series of synthetic
meshes with varying resolution, as described above.

Fig. 4 shows the gradient reconstruction error for a sphere
scalar field in relation to the resolution of the mesh. As N
increases, the discretization distance decreases, improving the
accuracy of the reconstruction. Notice that solid angle and
inverse weighted centroid distance produce better estimates
than uniform weighting. Volume weighting, i.e. Green-Gauss
reconstruction, provides the least accurate reconstruction. No-
tice also the quadratic trend as the discretization distance
decreases. When we keep the discretization distance constant
and vary the irregularity factor, we notice a linear trend.
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effective as the mesh becomes highly irregular. Inverse centroid remains as the most accurate. For the case of regression methods,
3D weighted regression outperforms the other methods and becomes even more accurate than averaging-based methods.
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Fig. 7. Visual comparison of the different methods with respect to the element shape (Here, the max. aspect ratio is 0.01). Notice
the bumpiness of other methods compared to 3D weighted regression as suggested by the specular highlights. 3D unweighted
regression leads to poor estimates that impacts negatively the benefit of the rendering.

Fig. 5 shows the progression of gradient accuracy for the
purposes of lighting as the resolution of the mesh increases.
On top, we show the effects of inverse centroid weighted
average. At the bottom, we show the results for unweighted
3D regression. Though having the same geometry, there is a
discernible bumpiness in the appearance of the spheres for the
case of regression, and the meshing quality is apparent. For
weighted average, the sphere looks smooth.

4.4 Effects of Element Shape

As noted above, although the mesh is irregular, the average
element has a regular shape. To measure the effects of element
shape, we created a series of meshes where we scale down one
of the dimensions of the mesh, thereby decreasing the aspect
ratio of the elements. Fig. 6 shows the mean cosine error for the
sphere scalar function for both averaging and regression-based
methods. Note the particular behavior of solid angle weighting
vs. volume weighting (or Green Gauss). For better shaped
meshes, it appears more accurate than Green Gauss, but this
trend changes as the shape quality decreases. Overall, however,
the accuracy of averaging methods seems to converge.

For regression-based methods the difference is more dra-
matic. We can clearly see the effects of weighting, as reported
by Mavriplis [17]. For low quality meshes (in this case for
stretch factor below 0.05), weighted 3D regression performs
even better than averaging methods. Unweighted 3D regres-
sion is consistently poor in comparison. For the case of 4D
regression, weighting has no apparent effect.

To visualize these results, we show the rendering results for a
spherical data set in a highly irregular mesh (Fig. 7). Weighted

regression, as suggested by the quantitative results, provides
the higher quality. Notice the smoothness of the color on the
surface and in the specular highlights. It is followed closely
by averaging methods. The most noticeable difference of these
is the solid angle averaging. Notice a bumpier appearance
in the specular reflections. 4D regression provides a poorer
estimate of the gradient, but the worst quality is obtained with
unweighted 3D regression.

4.5 Effects of Neighborhood Size

As pointed out above, regression-based models can be easily
extended to estimate the gradient based on an arbitrary neigh-
borhood, instead of the neighbors given by the mesh connec-
tivity. This meshless approximation requires a spatial neighbor-
hood around each vertex. Since the mesh density may change
dramatically from vertex to vertex, this spatial neighborhood
is usually defined adaptively. To compare this method with
mesh-based reconstruction, we define the neighborhood as a
variable isotropic radius Rc proportional to the radius of the
sphere circumscribing the immediate neighbors of a vertex (as
defined by the mesh), as depicted in Fig. 2(d). Therefore, when
the support radius R = 1.0R¢, the meshless approximation
contains all the points that are considered in a mesh-based
approximation (although it may contain more), and we expect
to see similar accuracy. In general, anisotropic weights are more
useful to account for the variation of point density in the mesh.
The evaluation of this aspect and the accuracy of meshless
gradient reconstruction is well beyond the scope of this paper.
Here, we consider the gradient reconstruction using linear
basis functions and isotropic neighborhoods. As the radius
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Fig. 8. Effects of neighborhood size for a mesh with a spherical
scalar function (top) and the Marschner-Lobb function (bottom).
We plot the error of meshless methods (approximation and
analytical derivatives) as the support radius increases, and
compare it to regression and averaging methods. For a support
radius factor near 1, the error is similar to that of mesh-based
regression. Larger support improves the reconstruction momen-
tarily, until the real shape of the scalar function deviates from the
linear approximation (a plane).

increases, the accuracy of the linear meshless approximation
improves, as more points are considered. However, at some
point the accuracy is expected to decrease, since it approxi-
mates a larger region with a plane. Fig. 8 shows the result of the
gradient of the local meshless approximation and the analytical
derivatives, i.e. the first term and the full expression in Eq.
(18), respectively. The plot also shows the result of averaging
(using inverse centroid weighting) and weighted regression,
computed once using the connected neighbors of a vertex,
as baselines. On the top, we see the accuracy for a spherical
function, as describe above, and the bottom shows the accuracy
for the Marschner-Lobb data set. We can see that meshless
reconstruction becomes as accurate (or better) than average-
based methods for certain neighborhood sizes. The accuracy is
much better for a smooth function, such as a sphere, compared
to the Marschner-Lobb function, which exhibits a higher spatial
frequency. We see that, as the number of neighbors increases,
the accuracy of the reconstruction starts to decrease. This is
more noticeable for the latter dataset, since the reconstruction
“flattens” the surface (it approximates the region with a plane)
and deviates considerably from the ground truth gradient.

Fig. 9 shows three volume rendered images for increasing
neighborhood radii. Although the numerical result is not as
accurate, the visual effect of adding more points is a smoother
surface that retains the overall shape of the isosurfaces. Note
in particular the disappearance of artifacts near the contours
of the sinusoidal ridges. We compare the reconstruction using
the regression approximation (top) with the one obtained as
the analytical gradient of the meshless reconstruction (bottom).
Consistent with the results in Ledergerber et al. [13], the differ-
ence is only noticeable for models presenting high frequencies.
Note that the meshless reconstruction was only performed on
the gradient and not the function itself, for the purposes of
evaluation. In general, meshless raycasting approximates both
the function and its gradient.

8

Mesh # Vertices # Cells | Source
spx 2896 12936 | Nitrosso, Electricité de France
fighter 13832 70125 | Neely and Batina, NASA.
hand 28796 125127 | Meshing, Alliez et al. [4]
skull 37813 156135 | Meshing, Alliez et al. [4]
parikh 103064 567862 | Airflow sim.,VIGYAN,Inc.
post 108300 616050 | Liquid Oxygen Post.
heart 140425 689020 | Tetrahedral model of heart [2]
bucky 262144 | 1250235 | Simulation, Haimes, MIT
plasma 274625 | 1310720 | Simulation, ISTI [1]
mé6 357900 | 2000034 | ONERA M6 Wing, NASA
sf2 378747 | 2067739 | Earthquake Simulation [23]
Iwt 804056 | 4607888 | LWT aircraft airflow simulation

TABLE 1

Summary of data sets for our quantitative and visual analysis.

4.6 Effects of Scalar Field Complexity

To test the effects of scalar field complexity, we kept the size
and shape of the mesh fixed and changed the complexity of
the scalar function. To this purpose, we used a synthetic grid of
N = 48 and ¢ = 0.25. For the scalar field, we used a Marschner-
Lobb function, as described in [16], while varying « and fas.
The trace of the Hessian T'r(H(f)) grows proportional to the
product of these two parameters. Fig. 10 shows the mean cosine
error for several Marschner-Lobb functions, labeled ij, where
o = 0.1 and far = 0.1j. Notice that, overall, the accuracy
decreases as the complexity of the scalar function (measured
as the trace of the Hessian) increases. There are some cases,
however, where the accuracy improves. This is noticeable in
the regular grid more than the irregular mesh. This can be
explained as a case of alignment of the scalar field with the
mesh, as noted by Shewchuk [26]. When we plot correlation
of the errors, we see an overall increasing trend that accounts
for the variability in the gradient reconstruction error. Also,
we noted that 3D weighted regression appears more correlated
than 4D unweighted regression, even though the mean error
appears larger. This implies a systematic error that, although
deteriorates the average error, appears correlated.

4.7 Quantitative Comparison

To test in “real” meshes, we applied the reconstruction to
a series of meshes from CFD simulations and finite element
simulations. Fig. 11 shows the result for both types of meshes
on a sphere scalar function. By looking at this result, we can
confirm the trends exhibited in our previous experiment. In
general, averaging methods perform better than regression.
Furthermore, inverse centroid distance appears more accurate
than other weighting methods, and volume weighting (Green
Gauss) provides the least accurate reconstruction. A notable
exception is the heart data set. Further inspection showed
the presence of near degenerate tetrahedra due to meshing
errors. Interestingly, weighted 3D regression also performs
better when compared to other regression methods for this data
set, as with the skull and hand data sets. These three data sets
are tetrahedralizations of 3D surfaces. For CFD simulations, a
notable case is the post data set, where 3D weighted regression
performs better than other regression methods. This data set is
characterized by the varying element shapes and low quality
of the mesh near the outer boundary regions.

4.8 Efficiency Analysis

Another dimension of our evaluation is the computational cost
of the different methods. The results are summarized in Fig. 12
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Fig. 9. Visual comparison on the effects of neighborhood size for the Marschner-Lobb scalar function. As we introduce more points,
the rendered surfaces become smoother and artifacts due to meshing become less apparent. Increasing the neighborhood further
makes the surface to appear flatter. Top: Local meshless approximation. Bottom: Analytical derivatives of meshless reconstruction.
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Fig. 12. Time to compute gradient for test benchmark (grid
with § = 0.25, sphere scalar field). The Green Gauss method
is significantly faster than the rest (including volume-weighted
averaging, which produces equivalent results). Weighting may
be costly for averaging methods, but does not have a significant
impact in regression-based methods.

for the synthetic data sets. We used an Intel Core 2 quad-core
processor with 3.0 GHz and 4GB of RAM. The results were
obtained in a CPU-based implementation using a comparable
set of operations for each of the methods. We expect the relative
performance of each method to be similar under different ma-
chines, including GPUs. Although parallel computation may
decrease the gap between the different methods, the relative
cost per element is still the same. Cell average is in general
the costliest approach, in particular for the solid angle and
inverse centroid weighting schemes. Green Gauss, on the other
hand, is the fastest of all methods. Compare it to averaging
with volume weighting, which provides equivalent results.
Regression methods do not differ greatly in speed, and the
cost of weighting is insignificant in comparison to unweighted
regression, and are out-weighted by their benefits in accuracy.
Due to the speed, Green Gauss reconstruction is attractive
for interactive visualization. However, as seen above, volume
weighted reconstruction is not robust to low quality meshes,
whereas 3D weighted regression is. This motivates one of our
heuristic methods, which combines the benefits of these two
approaches, as described in Section 5.1.

4.9 Visual Comparison

Fig. 13 shows the volume rendering of a jet wing wind simula-
tion data set. This is a representative mesh of CFD simulations,
where an adaptive mesh is used to populate densely regions
of interest (around the wing and missile). In our rendering,
we aim at highlighting the shock waves on the wing. Lighting
helps understand the shape of these shock waves. As suggested
by the quantitative results, all methods produce good results on
high-quality regions, while differences become noticeable for
poor quality tetrahedra. As we move from averaging methods
to 3D regression, we see a decrease in quality. At the bottom
of Fig. 13, we provide close-up views of certain regions of the
volume and compare the results for inverse centroid weighted
average and unweighted 3D regression. On the left, we see the
effects of meshing more noticeable in the case of 3D regression
as shown in the shape of the specular highlight. In the middle,
weighted average shows a smoother surface near the boundary
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of the mesh. On the right, a portion of one of the shock waves
appears smooth when using averaging, but appears broken
and bumpy for the case of 3D regression.

Fig. 14 shows a different case, where a smoothly changing
function is embedded in a variable quality mesh (oxygen post
data set). Both weighted regression and cell average methods
produce similar results. The Green-Gauss method is also sim-
ilar, except for a few changes in the apparent curvature of the
shapes due to the use of low quality cells near the boundary.
Unweighted regression suffers most from the low quality of the
mesh. In this case, poor quality gradient reconstruction leads
to the appearance of creases and folds where there are none,
and the apparent flatness of regions where there should be a
smooth curved surface.

5 IMPLICATIONS

Our study has provided interesting insight on the behavior of
different gradient reconstruction methods for the purposes of
lighting. We summarize these as follows:

(1) Averaging-based methods provide the most accurate
gradient reconstruction in general, and the inverse centroid
distance is consistently more accurate than other methods, such
as Green Gauss, that are based on volume weighting. This is
especially true for highly regular meshes.

(2) Regression-based methods are less accurate, but can
adapt better to low quality meshes. Unweighted regression
leads to poor gradient reconstructions, especially when the
mesh is highly irregular. Since inverse distance weighted re-
gression has a similar computational cost, it should be pre-
ferred. The benefits of this weighting, however, do not apply
for 4D regression, which behaves similar to volume weighted
averaging.

(3) To improve the accuracy of the reconstruction, one may
have to increase the neighborhood. Although this would re-
quire an additional structure for weighted cell average meth-
ods, as it requires to find the extended cell neighborhood of
a cell, it becomes easy to do for regression-based methods.
Inverse distance weighting leads to a Moving Least Squares
reconstruction, popular in surface reconstruction from point
sets. Although introducing more points produces smoother re-
sults, they are not necessarily more accurate, as it approximates
regions with high frequencies to planes.

(4) Although volume weighted average and Green-Gauss
are equivalent, their implementations differ greatly and the
speed gap becomes noticeable. The Green-Gauss method then
becomes attractive for interactive rendering systems.

Based on our observations we propose two heuristics for
obtaining high-quality rendering of unstructured meshes at
reasonable speeds.

5.1 Hybrid Gradient Reconstruction

Similar to recent hybrid rendering methods, we can derive a
hybrid gradient reconstruction method that favors a method
depending on the local structure of the mesh. Many unstruc-
tured meshes, particularly in CFD simulations, are defined
adaptively, so that large tetrahedra are located in regions of low
interest, whereas small tetrahedra populate regions of interest.
Connecting these usually results in tetrahedra of disparate
size and aspect ratios. By probing the mesh quality in a pre-
processing step, we can define the gradient using averaging
methods for high quality regions and regression for low quality
regions.
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Fig. 13. Visual comparison of four methods for a aerodynamics flow simulation. Here, lighting helps understand the shape of the
shock waves around the wing of an aircraft. At the bottom, close up views of different regions show that gradients in unweighted
regression make the meshing evident, while surfaces appear smoother with averaging.
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Fig. 14. Visual comparison of a smoothly changing function on a variable quality mesh (Oxygen post data set). Regions of good
mesh quality (near the post) are reconstructed well for all methods. Because the function is smoothly changing, there is little
difference between regression and averaging methods. For the Green Gauss methods, the shape appears more pronounced near
the boundary (where there are poor quality cells). For unweighted regression, the effects of a poor quality mesh are more dramatic.
Some regions appear to have creases and folds where there are none, while some other regions appear flat.

For example, Fig. 15 shows the results of applying hy-
brid gradient reconstruction to the oxygen post data set. We
see a difference between the shape of features as estimated
by the weighted regression and Green Gauss methods, as
suggested by the specular highlights. Green Gauss methods
also introduce mesh-aligned normals near the boundaries, but
the normals are, for the most part, smoother. The hybrid
reconstruction uses a threshold © = 0.125 on the aspect
ratio to determine which method to use. Regression is only
used when the minimum aspect ratio of the neighboring cells
of a vertex is less than 7. This binary operator introduces
discontinuities, as shown in the third image from the left.
To avoid artifacts in the boundary of these two regions, we
define a continuous measure, clamped between 0 and 1, and
use it as a modulation factor in linear (or spherical) blending
between the two normals. Let us define ng(z) and nw(x)

as the gradients computed using Green-Gauss and weighted
regression, respectively. The normal at a given point can be
found as:

n(z) = a(z)ng(z) + (1 — a(z))nw(z) (20)

where a(z) € [0,1] is a function of volume, aspect ratio or any
other metric that describes the irregularity of the mesh at any
given point. To avoid computing two normals for each point,
this equation only needs to compute one of them when «a(z)
tends to 0 or 1. In Fig. 15, we use:

minie Neigh(a) (A1) — T) !
T

(ex))

az) =
0

where A(7) is the aspect ratio of element i, Neigh(x) is the set
of incident cells of vertex x, and [z]} is a clamping operation
that keeps the values between 0 and 1. Here, we assume that
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Fig. 15. Hybrid reconstruction, based on a threshold on the aspect ratio of cells. Using a binary threshold, however (third from the
left), results in visible discontinuities. With blending, the normals are adapted smoothly between both methods.

the aspect ratio is defined between 0 and 1, such that badly
shaped elements have aspect ratio close to 0. Notice how the
discontinuity is removed and the shape now appears smooth.

We tested our hybrid reconstruction in a set of meshes of
variable element shape. Similar to the meshes constructed for
Section 4.4, we varied the scaling factor along one of the
dimensions. Instead of a uniform scaling (generating elements
of same quality), we modulate the scaling along a direction,
giving a range of elements from regular to irregular shapes in
the same mesh. Fig. 16 shows the results for a hybrid recon-
struction between Green Gauss and weighted regression using
two different thresholding values. As expected, the accuracy
of the hybrid reconstruction follows the “best” reconstruction
for a given mesh. When the shape is highly regular, the
hybrid reconstruction behaves as an averaging method, and
conversely, when the shape is bad, the reconstruction behaves
as a regression method. Interestingly, the hybrid reconstruction
improves the mean accuracy over weighted regression for
highly irregular meshes, suggesting that local adaptation of
the gradient reconstruction helps reduce the error variability
introduced by elements of varying shape.

5.2 Fixed-Size Neighborhood Reconstruction

One of the issues with gradient reconstruction is the reliance
on connectivity information. Certain rendering mechanisms,
such as cell projection, do not require connectivity informa-
tion. Others, such as raycasting, use cell-to-cell connectivity to
traverse rays into the mesh, at the cost of increased memory
requirements. This poses a problem for dynamic meshes, where
gradients need to be re-computed as the scalar function and
the mesh change. We can alleviate the requirements with the
use of fixed-size neighborhoods for gradient computation. For
time-varying data, this fixed-size neighborhood can be pre-
computed. Furthermore, it can be efficiently encoded in the
texture memory of contemporary graphics cards for GPU-
assisted volume rendering.

Regression methods can be easily set up to handle fixed-
size neighborhoods, since they provide the best (linear) fit
of the gradient function to the available set of points. The
choice of neighbors, however, may also affect the quality of
the reconstruction. According to our evaluation, in general,
inverse distance weighted regression provides better estimates
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Fig. 16. Accuracy of the hybrid reconstruction scheme (Data
sets are the same as in Fig. 6. For irregular elements, the hybrid
method favors the regression method. As the shape quality
improves, the hybrid method favors the Green Gauss method.
As seen in the plot, the adaptive scheme also improves the
mean accuracy.

of the gradient than unweighted regression. If we estimate the
gradient based on a subset of the neighbors, the order in which
we select them becomes important. Similar to meshless ap-
proximations, nearest neighbors should contribute more to the
gradient. To test the effects of neighborhood size and selection
criteria, we computed the gradient for an unstructured mesh
under three neighbor ranking procedures: (1) Unsorted, which
chooses K < N neighbors randomly, (2) distance, which ranks
them in decreasing order based on distance, and (3) inverse
distance, which performs the inverse ranking. Fig. 17 shows the
result in the mean error. We notice that inverse distance ranking
provides more accurate reconstructions than other rankings.
Interestingly, for only 3 neighbors, unsorted neighbors produce
a better estimate. Second, we notice that inverse distance
ranking results in higher accuracy than considering the full
neighborhood, which suggest the presence of outliers. Similar
results were obtained for other meshes of varying size and
element shape.

An important implication is that progressive lighting of
unstructured meshes can be done on the fly. The lowest quality
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Fig. 17. Effect of ranked fixed-size neighborhood on accuracy
(Data set is a grid with § = 0.5 and sphere scalar function). We
plot MCE of the estimated gradient vs. number of neighbors for
three neighbor ranking procedures. Inverse distance ranking, as
suggested by our quantitative analysis, produces more accurate
estimates than naive (distance) or random selection.

may be obtained by encoding only the 4 highest ranked
neighbors. A medium quality can be obtained by encoding
the 8 highest ranked neighbors for each vertex. Although it
may not be accurate, the result is acceptable for interactive
exploration. In this way, time-varying data sets can be explored
at good quality without much computation cost, at the expense
of extra memory required for storing the neighbors.

6 IMPLEMENTATION DETAILS

The methods described above can be implemented and de-
ployed for all the predominant unstructured-mesh rendering
techniques, including cell projection, raycasting and point-
based methods. Here, we discuss implementation details for
realizing these methods in GPU-based raycasting. Raycasting
on the GPU is achieved by encoding the unstructured mesh in
one 2D and one 3D texture. Volume rendering is obtained by
traversing rays into the unstructured mesh, using the connec-
tivity to move from a cell to the next one.

In our implementation, the x,y,z coordinates of each vertex
are encoded in the color components of each texel in a 2D
texture verts. For compact encoding, we store the scalar value
of each vertex in the alpha channel. Cell information is stored
in a 2D texture cells, where each channel encodes an index
to the vertex array. Raycasting is achieved by rendering a
quadrilateral of the size of the screen, and creating a ray for
each pixel. Each ray is traversed in the mesh by finding the
intersection with the current cell and moving to the corre-
sponding adjacent cell. For this reason, this implementation
also requires the storage of the cell-to-cell connectivity. The
per-vertex gradient can be stored in a texture similar to the
texture verts, in a pre-processing step. This pre-processing
step makes use of additional structures, such as vertex-to-vertex
(for the case of regression) and vertex-to-cell (for averaging
methods) connectivity. For time-varying data sets, it is desir-
able to compute the per-vertex gradient on-the-fly. However,
the vertex-to-vertex and vertex-to-cell connectivity are costly to
encode and access via textures, due to its irregularity. Fixed-
size neighborhood reconstruction, however, can be encoded
efficiently in the GPU. The vertex-to-vertex connectivity can
be encoded in a 2D textures, up to a fixed-size (say, 4 or 8
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neighbors), similar to the cell texture. In a rendering pre-pass,
we traverse in parallel all vertices in the mesh by drawing
the vertex texture in a quadrilateral of the size of the texture.
A shader program implements the regression method on the
fixed-size neighborhood and the result is directed to the gradi-
ent texture. This method, although fast, requires enough GPU
memory to store the additional gradient texture. Alternatively,
regression-based reconstruction of the gradient can be included
in the volume rendering shader, which increases the cost of
rendering, but lessens the texture memory requirements.

7 CONCLUSIONS AND FUTURE WORK

We have conducted a systematic evaluation of linear gradient
reconstruction methods for unstructured-mesh volume render-
ing. Mesh resolution and scalar field complexities are two
important factors in the accuracy of gradient reconstruction
methods and their bounds can be found analytically. Our
experiments confirm the quadratic trend for the linear meth-
ods. However, the shape of elements is also a factor and
can lead to noticeable differences when the mesh becomes
highly irregular. We notice that, despite being a good weighting
scheme in general, solid angle weighting of neighboring cell
gradients leads to errors when the mesh elements become al-
most planar. Inverse-distance weighted regression, on the other
hand, produces the highest accuracy as the mesh becomes
highly irregular. The implementation of these methods implies
additional costs. As numerous meshes have a larger ratio of
cells to vertices, storing the vertex-to-vertex connectivity may
be more efficient than the vertex-to-cell connectivity, suggesting
a preference for regression-based methods. Alternatives such
as the Green Gauss theorem are computationally more effi-
cient but require the vertex-to-cell connectivity. Aftosmis et al.
suggested an alternative implementation that uses only vertex-
vertex connectivity [3]. Nevertheless, Green Gauss methods
may fail to adapt to regions of badly shaped elements. Due
to the lack of ground truth, volume rendering of real meshes
cannot be accurately compared except for smoothness and
continuity in the reconstructed shapes. Two isosurfaces may
still look smooth and yet provide different cues for shape, as
exhibited in our visual comparison. In other cases, the effects
of meshing are evident. As higher order meshes become more
widely used and the GPU implementations begin to support
mixed meshes, the need for higher order gradients will more
become important. Our evaluation can be followed for further
comparative studies. Furthermore, higher order meshes may
be used to obtain gradients of higher accuracy to measure
the error of linear methods. With our study on gradient
computation, we attempt making lighting and gradient-based
rendering of arbitrary meshes a commodity, and enable high-
quality rendering of unstructured-mesh volume data.
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