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Curve-Centric Volume Reformation for Comparative Visualization
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Fig. 1. The vorticity magnitude on the top and the velocity magnitude on the bottom (volume-rendered in both cases) of a wind
simulation around a car as seen from the inside of a streamline and out radially. The horizontal axis is arc-length of the streamline in
meter.

Abstract—We present two visualization techniques for curve-centric volume reformation with the aim to create compelling compar-
ative visualizations. A curve-centric volume reformation deforms a volume, with regards to a curve in space, to create a new space
in which the curve evaluates to zero in two dimensions and spans its arc-length in the third. The volume surrounding the curve is
deformed such that spatial neighborhood to the curve is preserved. The result of the curve-centric reformation produces images
where one axis is aligned to arc-length, and thus allows researchers and practitioners to apply their arc-length parameterized data
visualizations in parallel for comparison. Furthermore we show that when visualizing dense data, our technique provides an inside
out projection, from the curve and out into the volume, which allows for inspection what is around the curve. Finally we demonstrate
the usefulness of our techniques in the context of two application cases. We show that existing data visualizations of arc-length
parameterized data can be enhanced by using our techniques, in addition to creating a new view and perspective on volumetric data
around curves. Additionally we show how volumetric data can be brought into plotting environments that allow precise readouts. In
the first case we inspect streamlines in a flow field around a car, and in the second we inspect seismic volumes and well logs from
drilling.

Index Terms—Volume Deformation, Curve-Centric-Reformation, Comparative Visualization, Radial Ray-Casting.
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1 INTRODUCTION

Successful comparative visualizations build upon one or several shared
axes as a reference for attributes that should be compared. Tufte called
this visual parallels: “Spatial parallelism takes advantage of our no-
table capacity to compare and reason about multiple images that ap-
pear simultaneously within our eyespan” [25]. Many 2D and 3D vi-
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sualizations often provide a common reference where comparison is
readily available. However, there are numerous cases when the quanti-
ties being visualized do not conform to a single shared axis or the com-
mon reference makes their comparison difficult. For example, produc-
tion wells, into oil reservoirs, are drilled with complex geometries and
turns rather than, previously common, straight vertical wells. In cur-
rent operations, most preparations, i.e. well planning, etc., are done
in 3D environments, whereas the end product, the drill plan, and all
drilling data, is produced in 1D, along well length. Current data anal-
ysis with regards to measurements from the well, is done in regular
graphs along well-length, but this technique is lacking the spatial 3D
context, something we address in this paper. Furthermore, the compar-
ison between two wells of disparate shape and length is difficult in the
shared 3D space. Instead, it becomes apparent that a more meaningful
comparison is obtained when each well is straightened and the visu-
alized quantities are visualized along their arc-length. Multiple wells
of varying length and shape can now be contrasted in a single shared
space. A similar need emerges for the comparison of streamlines in
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a flow simulation. Since individual streamlines can have an arbitrary
shape, quantities such as velocity magnitude and vorticity along the
streamline, etc., they cannot be compared directly in 3D space due to
inter-occlusion and differences in curvature and length. Instead, we
can generate a shared frame of reference that straightens each stream-
line and lets us visualize a relevant quantity in terms of their arc-length.
An example is shown in Figure 1, where we display the vorticity and
velocity magnitude of a wind simulation around a car in a 2D plane
representing the space around a streamline. The visualization maps
the complex 3D shape around a streamline into a 2D view that plots
the distribution of vorticity and velocity radially around a given point.
With this new type of visualization, one can easily quantify changes of
a certain variable along a streamline and correlate them to arc-length
or radial angle. Furthermore, one can correlate the behavior of a quan-
tity among several streamlines.

To achieve these visualizations, we present a general notion of a
curve-centric reformation, which maps the space around a 3D curve
onto a frame of reference relating to the properties of the curve. We
present two forms of such a reformation. In the more general sense of
reformation, curve-centric volume reformation is a mapping from the
original 3D space to a 3D curve-aligned space, where one axis rep-
resents the length of the curve, and the other two are the (adjusted)
normal and binormal vectors. Unlike traditional visualizations, where
objects and lines are shown in a given 3D space, curve-centric visual-
izations depict the given space in the frame of reference defined by the
curve.

Another type of curve-centric reformation is curve-centric radial
raycasting, which defines the mapping to a 2D plane, where one axis
(in this paper always the horizontal one) represents the arc-length
of the curve and the other axis (here the vertical one) represents the
cylindrical angle around the curve. This type of reformation is remi-
niscent of 3D flattening used for the visualization of virtual colono-
scopies [2, 12]. Unlike virtual colon flattening, where shapes and
angles are preserved for better diagnostics, our radial raycasting ap-
proach preserves distances, essential for a meaningful quantitative
comparison of variables along the curve. This radial ray-casting there-
fore produces images of 3D volumes from a novel inside-looking-out
perspective. As the aim of both these reformations is to accurately por-
tray the neighborhood of the curve along arc-length, their intended use
is not directly comparable with existing space deformation techniques,
that are designed to create alternative (deformed) views of objects.

In our approach, we use a variation of the well known Frenet
frame [7] for creating moving frames and provide an implementation
that fits into a general GPU-based visualization system. Furthermore
we demonstrate the usefulness of our approach in two scenarios. In
one, we use a curve-centric reformation to visualize quantities along
the arc-length of log wells for oil exploration. In the second, we vi-
sualize the vorticity and velocity magnitude of a wind flow simulation
around a car. We show that shape reformation provides hints about the
smoothness and curvature of streamlines. These quantities, which can
be cumbersome to represent in the 3D view at the same time, can now
be provided as a comparative visualization.

We make the following contributions: (1) We present a curve-
centric deformation of volume data for the purposes of cross-
comparison and easier quantitative analysis. As such, our deformation
preserves arc length and orthogonal distances from the center. This
is a departure from traditional curve-guided deformations which pre-
serve local shape but not distances. Although useful for generating
new views of an object, traditional deformation does not ensure the
preservation of quantities essential for meaningful comparison. (2) We
present a novel raycasting view that provides unprecedented inside-
looking-out views of complex volume data. Current approaches for
raycasting of deformed volumes exploit the programmability of con-
temporary GPUs, but the resulting visualizations remain essentially
outside-looking-in views of the data. Our results provide novel views
that show quantities of interest along important curves.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 6, NOVEMBER/DECEMBER 2009

2 RELATED WORK

Curved planar reformation. An important issue in visualization is
the rendering of complex objects in simpler spaces. Some of these is-
sues stem from the need to compare and measure areas and distances
in a 2D plane rather than an arbitrary 3D shape. One such example
is curved planar reformation, which maps a volumetric space around
a curve to a plane. This idea has been used for virtual colonoscopy
and the visualization of other curved structures. Vilanova et al. use
nonlinear raycasting to flatten the internal view of a virtual colon [2].
Similar techniques have been proposed by Wang et al. [27], who un-
ravel the colon using a physics-based deformation of the centerline,
and Hong et al. [12] and Haker et al. [10], who use a conformal map-
ping [12]. These approaches use nonlinear raycasting to compute a 2D
inside-looking-out image of the colon. A recent approach by Williams
et al. [29] also unfolds the colon using multiplanar reformation. How-
ever, their visualization is not a planar mapping, but instead an or-
thogonal projection of the reformed volume. As such, although less
effective as a compact map, the result appears more familiar than the
planar warping.

In a similar way to colon flattening, Kanitsar et al. presented
(and later improved) curved planar reformation for vascular struc-
tures [14, 15]. Unlike the colon, vascular structures exhibit frequent
bifurcations, which leads to 2D mappings that branch out along with
the vascular structures. The reformation of vascular structures was
also explored by He et al. [11], who automate the definition of curves
by extracting the medial axis of vessels of interest. Lee and Rasch
improved this method by considering topological invariant transfor-
mations that lead to better visualizations with little artifacts due to
reformation [18]. Curve planar reformation also benefits the visual-
ization of misaligned features. For example, Vrtovec et al. [26] uses
curve planar reformation to align the central curve of the spine with
the sagittal and coronal planes of the 3D images of the spine. This
alignment lets radiologists compare different vertebrae in a single im-
age.

In this paper, we are not bound to a particular mapping of a 3D vol-
ume, but rather present a more general notion of reformation, called
curve-centric reformation, which maps the space around a curve to
either a 3D volume or to a 2D plane. This enables us to create novel
inside-out visualizations of complex datasets, somewhat similar to pla-
nar mappings, from oil well exploration to vehicle design.

Space warping. Curve-centric reformation can be also understood
as a type of space warping. Space warping is a general methodol-
ogy for deforming complex objects by warping the space surrounding
them. Because volumetric models often have no explicit geometry, this
method is often associated to volume deformation. Some of the first
attempts to use space warping to deform objects include Barr’s global
and local deformations, defined procedurally as geometric transforma-
tions [1], and Sederberg’s free-form deformation [21], which deforms
solid geometric models by warping a tri-cubic lattice enclosing that
object. To overcome the need for possible dense control lattices, Sum-
ner et al. [23] uses a graph structure to deform the local space sur-
rounding a number of nodes in an object. Singh explores the use of
domain curves or wires to deform the space near them [22]. For a
complete survey in space deformation, refer to Gain et al.’s paper [8].
Unlike curve-oriented space deformation, often oriented towards ob-
taining new poses of a geometric model from a set of user defined
curves, our curves are not a means for defining deformation but a cen-
terline along which the user can visualize a certain quantity and the
surrounding space.

The idea of space deformation was later continued by True and
Hughe [24] for volume warping. More recent volume deformations
exploit hardware acceleration to obtain volume deformations in real-
time, combining control lattices and volume rendering [28, 20]. As
an alternative to proxy-based deformation, one can attain the same re-
sults by warping the rays used for volume rendering. Nonlinear ray
tracing, for example, as proposed by Groller [9] enables the render-
ing of nonlinear spaces such as the visualization of relativistic effects,
geometric behavior of dynamical nonlinear systems and visualizing
particles in a force field. Continuing this work, Loffelmann et al. gen-



LAMPE ET AL: CURVE-CENTRIC VOLUME REFORMATION FOR COMPARATIVE VISUALIZATION

eralized this technique on how to define a more abstract camera [19],
for use in raycasters. Kurzion and Yagel proposed ray deflectors to
accomplish volume deformation, which uses point sources to bend
rays as they are traced into the volume [17]. Chen et al. general-
ize this notion to discontinuous deformations in the form of spatial
transfer functions [4]. With the advent of fully programmable GPUs,
volume deformation has been embedded directly into the raycasting
process, enabling the creation of visualizations that resemble surgical
illustrations [5]. Deformed volume raycasting, however, retains the
outside-looking-in view common in volume rendering. In our paper,
we propose novel inside-looking-out curve-centric raycasting views.
For a more extensive description of these and other volume deforma-
tion techniques, see Chen et al.’s survey [3].

3 THEORY

In this section we first present the basis for our approach, in Section
3.1, which is to create a moving coordinate frame, or a tensor consist-
ing of orthonormal vectors. When this foundation is laid, we continue
to present our two different curve-centric reformation techniques, in
Section 3.2 and 3.3 before we investigate how we can utilize these in
comparative visualizations, in 3.4.

3.1 Moving Coordinate Frames

Creating curve-centric volume reformations relates very closely to the
problem of creating a local coordinate frame for every point along a
curve. This coordinate frame is a tensor, or in other words, a set of
orthonormal vectors for every point on a curve r(f). There are several
techniques generating this frame basis for curves, and what separates
them is the different problems they solve. The Frenet frame [7] uses
the first and second derivate to create a frame that is intuitive and gives
good geometric insight into the curve itself. This tensor is defined by
the curve alone, and leaves no control to the user in modifying the
tensor without changing the path of the curve. The Frenet frame is
however, not defined for curves where the second derivative is zero,
e.g. straight sections, or change of curvature. On positions where the
sign of the second derivative changes, the tensor "flips”. Klok [16]
introduced a solution to these sign changes, by introducing a fixed up-
vector, and by restricting the curve to those residing in a plane. If we
employ Klok’s technique on curves in 3D (even though they were not
intended for this), the tensor would collapse when the curves deriva-
tive is parallel with the selected up vector, and potentially have a sign
change ("flip”) afterwards. Another method, that can be used to gen-
erate frame tensors, is thin plate splines, as introduced by Duchon [6].
With the analogy of bending sheets of metal, this technique produces
tensors along the curve where the radial rotation is minimized. This
method produces smooth tensors with no sign changes, but this method
leaves, similar to the Frenet frame, no control over the direction of the
tensor. In our applications we see that preserving a logical up-vector is
producing a better spatial reference. Additionally, since the thin plate
splines optimizes the global minimum, minor changes to the curve
might radically change the result. Because of this, we introduce a tech-
nique that allows the user to specify an up vector, while not exhibiting
any sign changes. Our technique is similar to that of Klok [16], but
allows curves in 3D and the complete tensor is smoothed to avoid sign
changes and high frequency changes in the tangent.

The Frenet frame defines the tensor using local derivatives [7]. Let
L € R be a positive value and r(r) a parametric curve that is defined
for the interval 7 € [0,L]. The Frenet frame then defines its axes as

(1)
e @I

with T(¢) being the unit tangent, N(#) the unit normal, and B(z) the
unit binormal. The Frenet frame is quite elegant as it can be explicitly
computed for every point on the trajectory, but restricts the selection of
curves to only those that are twice continuously differentiable, e.g., no
curves with points of inflection. Klok’s modified Frenet frame [16] is
defined for curves in a plane where the normal m of the plane defines
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Fig. 2. The blue box represents a volume, and the black line the curve to
straighten. Two rows showing a) curve-linear deform with tangential T(z)
and b) the same curve-linear deform, but here with constant tangents.
Columns left to right show, tangents, normals, and lastly the deformed
box.

the binormal Bk () = m, and the tangent of the curve T(¢) and com-
pletes the frame by Nk (¢) = Bg(¢) x T(r). The Frenet frame, Klok’s
modified Frenet frame, and thin plate splines, place the tangent com-
ponent of the vector, T(z), equal to that of the curve’s tangent. Figure
2 shows a 2D version of a straightened curve in two versions, the up-
per using the tangent as a basis for creating the normal, and the lower
using a constant normal. In this example this makes a drastic differ-
ence on both the readability and the mathematical complexity of the
result. Following this we introduce a smoothing kernel K},, with width
h. This smoothing kernel is then applied to the original tangent by the
following convolution:

T(r) = (T=Kp)(

/T VK (t—1)dt

When applying this convolution to create the smoothed vector 'i‘(t) we
can experience, with some selections of K}, a degeneration, where this
vector, in a worst case scenario, can evaluate to a zero vector. To avoid
this we apply the above convolution/weighted sum after converting the
vectors to quaternions.

Another property we would like to translate to the deformed vol-
ume is a sense of the up direction. Many datasets have logically de-
fined up/down directions, and in these cases we consider a “desired up
vector” u. In all other cases, a consistent vector is chosen instead, as
we would like comparable results over several curves. With this vec-
tor u, we can now define our new normal N,, () and a binormal B, ()
according to the rule,

uxT()

T T(1) X Bu(t)

B, (1) = and N, (1) =

This rule is very simple, and it is very similar to the one proposed
by Klok [16], but unlike his technique this one is not constrained to
curves residing in a plane. However, it has two major issues that need
to be addressed. The first issue is the obvious case when T || u, and the
cross product is 0, accordingly. The second issue is to avoid a sudden
sign change of the normal and binormal that can follow such a parallel
segment. We solve both these issues by applying a similar smoothing
kernel as with ’i‘(t). Even more important here than with the tangent,
because of previously mentioned sign changes, spherical interpolation
must be applied for smoothing, achieved by kernel averaging on the
tensors quatermons From this definition of B( ) we define our normal
vector as N(r) = T(r) x B(r). Figure 3 shows how this smoothing
applies to a curve that experiences two sign changes with the modified
Frenet frame.

We have now defined a function creating a tensor of orthonormal
vectors at each point r(r) along the curve. In the next section we

1237



a) b)
-
' ¢

Fig. 3. Surfaces following the normal N(¢) as red, and the binormal B(r)
as green. Figure a) shows the modified Frenet frame, experiencing a
sign change that the smoothed version, b), handles gracefully.

Fig. 4. Left, a test volume with a curve in it, and right the result of Curve-
Centric reformation. This curve is, after the reformation, the straight line
shown in the middle of the volume to the right.

present two techniques that rely on such a moving frame. To ease
the notation and to present that the next techniques are independent
of a specific form of frame construction, we will hereby refer to the
tangent as t(z), the normal as n(¢) and the binormal b(¢). However,
it is fair to assume that for all practical applications, these vectors are
the same as the smoothed versions introduced in this section.

3.2 Curve-Centric Reformation

In curve-centric reformation we aim to create a new volume, parame-
terized by a curve’s arc-length and two terms indicating neighborhood
in a distance preserving manner. Unlike several other deformations,
the goal of curve-centric reformation is neither to preserve shape, nor
angles of external objects, but to correctly portray distances to features
and to use these features to provide a spatial frame of reference for the
curves trajectory. As shown in the previous section, we make sure that
no smoothing is applied to the curve’s position, as we would like to
strictly enforce these positions as the center of the resulting volume.
We define this reformed volume Y by means of a mapping to the
original volume X, or a function f: Y — X. Given a curve r(¢) and a
defined frame set for this curve, we utilize only the normal n(¢) and
the binormal b(¢) in the construction of f. We thus define the inverse
transformation, from our reformed volume and back to the original as:

f(x,y,2) =r(z) +xn(z) +yb(z), forze [0,L] (1)

which satisfies our initial definition of £(0,0,7) = r(z). It can easily
be proven that for any curve other than a perfect line, this mapping is
not one-to-one, and will usually contain singularities. An important
property of this transformation, besides that it preserves the distance
of arc-length, is that it preserves distances orthogonally out from the
center, i.e., given two points py,p; in a given plane orthogonal to ¥’s
z plane:

|lp2 —p1l| = |[f(p2) — £(p1)]| ()

the right hand term is, by decomposing p; to [x1,y1,21], and similarly
with py, equal to:

|| (r(z2) +x2n(z2) +y2b(z2)) — (r(z1) +x10(z1) +y1b(z1)) ||

which we reduce to, since z; = z;:

[[£(p2) —f(p)I| = [1(x2 +y2) — (x1 +y1)l|
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Fig. 5. Regular ray-casting uses proxy geometry, generating the en-
try and exit positions for ray traversal. Our radial ray-casting technique
mimics this behavior by setting the entry buffer to the curve’s position,
and the exit buffer as the curve’s position plus an angular rotation around
this curve.

e O
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since, our initial condition stated, the two points (pp; and p;) share
their z component, the left hand side of Eq. 2 can also trivially be
reduced to the same term.

From Eq. 1 it follows that the Z plane denoted by z in Y equals a
plane in X defined by the point r(z) and the tangent vector t(z). We
utilize this planar coherence to create a fast implementation of curve-
centric reformation by using render to 3D texture, rendering slice by
slice fetching samples from X. Rendering these slices z plane after
plane, n(z) and b(z) is constant per plane, and the evaluation of f is
done after selecting a width w around the curve to straighten, by linear
interpolation between four points, f(w,w, z), f(—w,w,z), f(—w, —w,2),
and f(w, —w, z) with sufficiently large w. The result after such a refor-
mation, is a regular 3D texture which can be visualized using, e.g., a
regular volume ray-caster as shown in Figure 4.

3.3 Radial Ray-Casting

As presented in the previous section, curve-centric reformation creates
a new regular volume, which has to be visualized using a particular
method; we now introduce a direct projection of the original volume
called radial curve-centric ray casting. Given a function that creates a
unit normal n(¢) and a unit binormal b(#) from a curve defined by r(z),
traversing the arc-length 7 we cast rays starting at r() in the direction

sin(¢)n(r) +cos(9) b(1), ¢ € [0,27]

In its simplest form, by using a straight line, this radial ray-casting
technique is reduced to a cylindrical projection, which form a pro-
jection that lies in between perspective, having a viewpoint, and an
orthogonal projection, having a plane of view, with a line as its start-
ing point. Using this technique one creates 2D projections that have
no perspective distortion in the horizontal direction, i.e., the direction
along the line, but with perspective distortion in the vertical direction,
i.e. the angular rotation around the curve. However in addition to the
perspective distortion, for curves, other than those of a perfect line,
the curvature of this curve, or rather the torsion of its moving frame
tensor, will further distort objects and features as seen from the curve.

A common strategy for ray-casting is to first render the texture coor-
dinates of the exit points for rays, and then to store them. Next the ray
casting is initiated by rendering the starting location of these rays, and
iterating the ray-casted volume using the line between start and exit.
This technique is depcited in Fig. 5, where the left part shows a box
used as proxy-geometry for rendering the entry and exit buffer. The
strength of this technique is its simplicity and that it is independent of
perspective and proxy geometry, and as we will show, also compatible
with our radial ray-casting. Generating the exit points is usually done
by rendering the proxy geometry, culling front faces, but we will use
a more direct method. The exit points in radial ray-casting are defined
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Fig. 6. The curve from Figure 4 shown as a curve-centric radial pro-
jection, top, as a reformed volume visualized, middle, and a curve plot,
showing the sampled intensities from the volume along the curve. This
comparative visualization allows accurate comparison of intensity val-
ues to their spatial origin.

as, over normalized screen-space u, v, using a far “plane”, or tube, with
radius far:

r(ul) + far- (sin2vm)n(ul)+ cos(2vm)b(uL))

For efficiency concerns, this exit point should also be clipped, at the
intersection point to the texture cube, to stay within existing volume
coordinates. After this exit buffer is established, we can start our ra-
dial ray-casting, using the start position r(«L). This start/entry and exit
buffer is shown, on the right of Fig. 5. Given the exit position buffer
and the starting position, this radial ray-casting technique is theoret-
ically compatible with shader code written for any other ray-caster
employing the same strategy, and will thus render at real-time speeds,
and be able to perform advanced dynamic transfer functions. When
applying proven shader techniques to this type of rays, one of course
needs to keep in mind the aliasing issue, produced by the fact that the
projection will sample the surrounding space with an uneven number
of rays, due to the curvature, and the combination of almost parallel
rays in the direction of the curve and an extreme perspective, 360 de-
grees (like in fisheye projections), in the rays orthogonal to the curve.
Figure 1 (the teaser image) shows two examples of radial ray-casting,
where a regular color map transfer function has been used, in addition
to edge enhancement. Another example is shown in Figure 6, where
the top image shows a radial ray-casting, and because of properties
in our generation of the moving frame, we can read out the direction
around the curve, as O degrees corresponds to the left of the curve,
looking in the direction of the trajectory (left to right), 90 degrees up,
180 right and 270 is below the curve.

Unless the curve is dynamic, this rendering produces images with a
fixed ”view”, but one can still implement an interactive exploration of
the volume around the curve, by constraining to either a subsegment
of L or a subset of the angular radii. An interaction scheme would then
allow for zooming, a reduction of segments in both dimensions, and
panning, which would translate this segment.

3.4 A Common Axis for Comparative Visualization

Two objects sharing one or more axes have a basis for comparison. A
shared axis is simply one that has the same unit, e.g., two physical ob-
jects share size, and can thus be compared in terms of size. Moreover,
the display of those shared axes should be shown in scale to each other,
optimally sharing the exact same scale, to avoid producing deceptive
visualizations. In this paper, we present two techniques that create vi-
sualizations, by deforming or projecting space, that are aligned with
the arc-length of a curve in space. The strong rationale for pursuing
this alignment is to be able to create visualizations that combine well
with existing techniques, like graphs, 2D plots, or even images. These

are techniques that are not always well imported into a 3D environ-
ment, e.g., Figure 7(a) shows 1D graphs for multiple wells drawn in
3D space, enabling coherence between values and their spatial posi-
tion, but is not suited for accurate readouts. By reversing this strategy
we instead investigate how well we can display information from vol-
umetric models with a correct alignment to the 1D space of these 1D
and 2D techniques. One way to look at this reformation is that one
renders the physical space in the logging space, instead of rendering
the logs in the physical space. A strong argument for this reformation,
in Figure 7(a)’s case, is that the function shown on a single well here
is actually only one of several production related parameters that the
production team is interested in analyzing. By straightening a single
well, all of the different production values can be shown in its own
graph, without the inherent occlusion problems that would exist in a
3D visualization. Another argument for exactly this reformation of
space, is to provide accuracy in display, e.g., in a plotting environment
one has a direct readout of values. Figure 6 shows such a plotting en-
vironment, where the two separate displays share the horizontal axis,
and one could theoretically use a ruler to match peaks in the bottom
curve to features in the two above. The curve-centric radial projec-
tion makes sure to preserve a required orthogonality in the direction
of the 1D axis of the plot. This orthogonality is also enforced in the
visualization of the deformed volume by simply rendering it with an
orthogonal projection.

The curve-centric visualization techniques are only fully utilized
when actually shown in the same space as important arc-length pa-
rameterized metrics. It is not within the scope of this paper to create
other novel visualization of these metrics, but to show how one can
create comparative visualizations by combining deformed and curve-
centric projected, with existing and well established techniques. In the
next section we show several examples of arc-length parameterized
data, but these are just some of the many that actually exists. As good
examples for these data sources, we can imagine most of the sensing
devices that are attached to moving objects. These sensing tools are
logging data by time, but indirectly they are also portraying informa-
tion about their surroundings as a function of where they are. Other
data sources are, e.g., 1D simulations or trajectory simulations.

4 APPLICATION CASES

In this section we show how we successfully applied our techniques
to cases of two different industries. In Section 4.1 we investigate two
cases with application to the petroleum industry; the first case where
we show how curve-centric reformations can help show the multiple
data sources gathered when drilling exploration wells; and in the sec-
ond, we show its application in a real-time drilling scenario, looking
closer into well-bore uncertainty at a certain strategic depth, motivated
by an actual incident. In Section 4.2 we similarly investigate two cases
with application to the car industry. In both of these two we investi-
gate parameters around streamlines, but in the first one we investigate
multiple parameters of a single streamline, whereas in the second we
compare several different streamlines on a single parameter.

4.1 Well-Centric Visualizations for the Petroleum Industry

The petroleum industry uses drilling in part for exploration and in part
for creating or expanding production in oil and gas reservoirs. Where
vertical wells are almost the norm for exploration wells, an increasing
number of horizontal wells and even those with more complex geom-
etry, are used to extend the lifetime of aging reservoirs. While drilling
these wells, operators apply several sensing tools to learn about the
surrounding formation, to get situational awareness, to predict poten-
tial problems, and to maximize the drilling parameters, e.g., rotation
speed, how much pressure should be applied to the drilling bit, and
more. These sensing tools can measure down-hole pressure, electric
conductivity of the formation wall and a number of other physical pa-
rameters. These provide output with a timestamp, or streaming data in
time, but for many of these physical parameters, different representa-
tions make more sense. E.g., a sensing device measuring the physical
properties of the rock outside the drill-string will provide a measure-
ment as a function of measured depth (arc-length, not true depth) and
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Fig. 7. (a): Multiple production wells shown as tubes, where color indi-
cate a single physical measured variable along the well length. All these
wells reside in the reservoir, some injecting fluids while others receiving
fluids. Image used with permission by StatoilHydro ASA. (b): The well
we investigate in this case. This figure shows the seismic volume in the
close vicinity to the well, before and after reformation.

to a lesser extent rotational position, rather than time. Similarly there
are many other parameters that are best shown as a function of depth
rather than time graphs, e.g., rate of penetration, hook-load, electric
logs, and more. When these logs, all having the common axis of arc-
length, are shown to explore their relation to seismic volume data, ex-
isting techniques usually put these logs into the 3D seismic space, as
shown in Figure 7(a). We argue that this technique highlights the seis-
mic volume as the important feature, showing the logs in a contextual
manner. We propose to invert this display, and to show the seismic
in the space of the logs instead. This is done by a reformation of the
volume around the wells, and thus the seismic volume share arc-length
as the axis with logs. An example of this is shown in Figure 8 where
different measures along the drill-string are compared for coherence,
as is a common operation in exploration drilling. This figure shows a
volume visualization of the deformed volume on top, containing the
well, an orange line, in the middle. The next is a graph of seismic
reflectance sampled along the wellpath. As expected we see a strong
correlation between this and the one above and below, which is the
radial ray-casted volume as seen from the well. The final image, at
the bottom, is a physical measured value, called an UBI image, or Ul-
trasonic Borehole Image. This imaging device produces 360 degree
images of the formation around the well, very much like our radial
raycaster, and we would thus expect to see a very tight correlation be-
tween these. Initial seismic volumes are often quite uncertain, and to
minimize these uncertainties they are compared to results from explo-
ration wells. We see the techniques of curve-centric reformation as a
natural addition to the already existing techniques for studying these
results.

Real-Time Drilling Data is the second case in which we introduce
a novel view on drilling. The contractors that drill wells have to fol-
low a strict plan of where the drill string should be on the way to the
target. In the preparation, to create a drill plan, the close proximity
to the well is mapped out and simplified into a 1D plan of different
properties that the wellbore passes through. These properties are, e.g.,
pressure gradients, lithology (rock type), and where stops, logs, and
casings should be positioned, all of which share the axis of arc-length.
A case using some of these drilling properties is shown in figure 9, in
which we inspect the properties of the well as shown in Figure 7(b)
before and after reformation. In this case we show an important part
of a drilling operation, in which we are drilling the final stretch before
we enter the reservoir, denoted by the blue limestone. Because of very
different properties of the shale (green) and the limestone it is very im-
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Fig. 8. The above images show different measures along a well-path.
From top, an orthogonal ray-casted view of a curve-centric deformed
seismic, second graph shows the volume intensity (seismic reflectance),
third shows an angular ray-casted view from the wellpath and out into
the surrounding seismic, and lastly the final image shows an ultrasonic
borehole image, an angular view into the formation.

portant to stop drilling as close as possible to this horizon, and insert a
casing to protect the wellbore and formation from changing pressures.
In addition to providing spatial awareness, this figure highlights an
important detail our petroleum industry partners has expressed inter-
est in, namely the wellbore uncertainty. The red ellipse, shown in the
same figure (9), represents the area, or rather the volumetric ellipsoid,
in which the drill-bit is positioned with 95.4% accuracy. Notice that
the 1D lithology column shows the limestone to start at the wellbore’s
intersection with a major horizon at 5.45 which is diagonal. It is fair
to assume that everything below this diagonal horizon is included in
the reservoir. This shows that the 1D lithology is only accurate if the
wellbore traverses where it was planned to. The 1D lithology column
fails to incorporate the uncertainty of wellbore positioning, eg., the
wellbore could be positioned deeper, and the reservoir would encoun-
tered earlier. In fact, the ellipse shows that given a 95.4% probability
safety margin, one cannot guarantee that we have not already entered
the reservoir. Projecting this ellipsoid into the 1D lithology column
would not reveal this. As mentioned earlier, this example is motivated
by an actual incident, where wellbore uncertainty led to the wrong
assumption that one had a good clearing before entering the horizon.
Secondary measures (gas show) did in fact even show signs that the
reservoir was entered, but was ignored due to the believed clearing,
and drilling was resumed. We contest that if our display would have
been used in this case, then the secondary sign would not have been ig-
nored, since the probability is already shown to be below the threshold
for entering the horizon.

4.2 Streamline-Centric Visualization

In this section we investigate a dataset containing velocity and pres-
sure from a single time step in a wind simulation for vehicle design.
Additionally we created a distance field from a geometry file. From
the velocity field, we extracted two scalar fields, velocity magnitude
and vorticity magnitude. An overview of these datasets are shown in
Figure 10. From the original velocity field we further extracted several
streamlines, from which we selected a few streamlines that shared an
interesting property in that they traverse in close proximity to a side
mirror, an overview of these streamlines are shown in Figure 11. In-
specting one of these streamlines is enabled in our shared axis view,
where multiple views on the streamline are provided for comparison.
This comparative visualization display, as shown in Figure 12, is well
suited for understanding how the streamline is affected by the different
fields, in addition to looking at the correlations between the different
fields. The deformed car on the top of Figure 12 acts as a spatial ref-
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Fig. 9. Deformed seismic can provide spatial reference for real time
drilling data as well as showing uncertainty in the 1D lithology column.
Image on top is the full length deformed wellbore, below a zoom-in of
the section currently drilled, which also contains the 1D lithology with
the current drill bit position, and a real time graph showing the rate of
penetration (ROP) for the section. The red ellipse in the center shows
positional uncertainty.

erence, additionally to reveal information on the curvature, the higher
the curvature the bigger the deformation on the car. In this view (still
Figure 12) we can see that there is a very good correlation between
velocity magnitude and pressure in front of the car. At 1.5 meters
into the streamlines arc-length, the streamline passes through a pos-
itive pressure, which is aligned with a slight drop in velocity. More
interesting is the low pressure the streamline passes through at 2 me-
ters, which interestingly enough does not seem to affect the velocity.
Right behind the car, at 5.5 meters, we can see a drop in velocity (the
blue vertical feature), that does not seem to correspond with any of
the other views. One possible explanation might be the vorticity and
low pressure feature right in front of it. Studying correlations in this
manner does provide a new perspective into the study of flow fields
that our industry partners found intriguing.

Our application partner, a team of engineers who use computational
fluid dynamics simulations for all aspects of automobile design, was
intrigued by the alternative views that we are able to create with defor-
mation and the curve-centric radial projection. The concept of apply-
ing deformation on the car body to reveal a secondary effect outside
of the car is very enticing to them. This deformation would then be
a tangible communication between the bodywork designers and them
for shape optimization. In particular, they pointed out that by choos-
ing the appropriate flow quantities other than velocity, such as vorticity
vector or helicity density, the deformed surface could actually suggest
the location and extent of the shape change needed to achieve optimal
performance. Additionally, the curve-centric radial projection of the
flow structure with respect to a straighten field line may display infor-
mation hard to reveal with conventional flow visualization techniques,
such as drag force acting on the car.

5 SUMMARY AND CONCLUSION

In this paper we have presented a general solution on how to create
new curve-centric parameterizations of volumetric space. Addition-
ally we have presented how to use this new parameterization in creat-
ing two visualizations that are aligned with the arc-length of the curve.
We have shown that we can use this alignment to create comparative
visualizations, where 3D spatial positions are shown directly overlap-
ping with 1D, or 2D arc-length parameterized functions.

We have successfully created a prototype using a combination of

Fig. 10. Top, velocity magnitude, middle, vorticity magnitude, and below
pressure, all from a vehicle design simulation.

Fig. 11. Showing five selected streamlines with a close proximity to the
side mirror, that provides interesting features to study.

C++ and Python, which implements the creation of a moving frame
given a curve, an optional up vector and a smoothing factor. Using
this moving frame and supplying a volume, 3D texture or array, and a
width, the prototype creates a deformed volume either as a 3D texture
or as an array. This prototype supplies methods for creating images
rendered either offline or real-time of both the deformed cube, as an
outside in view, and the radial 2D projection, giving inside out views.
Using this prototype we have created two case specific applications,
one to investigate streamlines, and one to investigate well data from
the petroleum industry. To avoid reinventing existing visualization
techniques we have integrated our techniques with matplotlib: A 2D
Graphics Environment as presented by Hunter [13], which enables the
use of existing 1D and 2D visualization techniques, along the aligned
axis of our result. Our test system has an Intel Core2 Quad CPU and
a GeForce 8800 GTX. Creation of a deformed volume with dimen-
sions [128,128,512], from an original volume [600,300,750], takes 19
milliseconds. Rendering a radial ray-casted image with dimensions
[2048,512] of the original volume takes 51 milliseconds.

Limitations and Future Work: The presented algorithm requires
a user specified up vector and smoothing factor, and for the volume
deformation, also a user specified width. While this user input pro-
vides flexibility, it does represent a limitation for complete automation.
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Fig. 12. A plot showing streamline 5 as shown in Figure 11. The de-
formed car is shown on top, which then acts as a spatial reference for
the measurements below. The three measurements below are radially
ray-casted streamline-centric views, and below a graph tracing a value
on the streamline.

There is a correlation between the frequency of changes of the curve,
the width of the box surrounding the curve, and the smoothing fac-
tor. This correlation is not explored in this paper, but could potentially
give some interesting automation of these parameters. The radial ray-
casting technique does not duplicate any of the original data, but the
volume deformation does. When straightening curves with high fre-
quency changes, which will then have a large arc-length within a small
section of the original volume, this duplication of voxels becomes very
apparent. Another limitation, is when sections of the curve, larger than
the smoothing kernel, are parallel with the up-vector. We proposed to
solve this by modifying the up vector, or by increasing the smooth-
ing factor, but the smoothing kernel could be expanded to take these
longer sections into account, and smooth over them by using a varying
smoothing factor.

In cooperation with our application partners we have used our pro-
totype applications to show how curve-centric visualizations, com-
bined with application specific data, can create effective and com-
pelling comparative visualizations. Moreover, we have produced a
more general approach, without the same application specific require-
ments as shown in previous techniques such as virtual colonoscopy or
curve planar reformation, one that ideally could be used for numerous
other applications as well.
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