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ABSTRACT
This paper introduces a new method for estimating the local neigh-
borhood and scale of data points to improve the robustness of spec-
tral clustering algorithms. We employ a subset of empty region
graphs – theβ -skeleton – and non-linear diffusion to define a locally-
adapted affinity matrix, which, as we demonstrate, provides higher
quality clustering than conventional approaches based onk near-
est neighbors or global scale parameters. Moreover, we show that
the clustering quality is far less sensitive to the choice ofβ and
other algorithm parameters, and to transformations such as geo-
metric distortion and random perturbation. We summarize the re-
sults of an empirical study that applies our method to a number of
2D synthetic data sets, consisting of clusters of arbitrary shape and
scale, and to real multi-dimensional classification examples from
benchmarks, including image segmentation.

Categories and Subject Descriptors
I.5.3 [Clustering]: Algorithms; H.2.8 [Database applications]:
Data mining

Keywords
Spectral Clustering, Proximity Graphs

1. INTRODUCTION
Clustering is at the core of modern data mining tools. Com-

mon techniques, such as those based onK-means or explicit den-
sity models, are being replaced byspectral methodsfor clustering,
where points are clustered based on a spectral analysis of a matrix
of pairwise similarities or affinities, instead of relying on a particu-
lar cluster model.

Spectral clustering has been applied successfully in a number of
fields, including image segmentation, text mining, and data analysis
in general. However, there remain a number of open questions:
(1) How to define the neighborhood around data points to estimate
a “good” affinity matrix, (2) how to adapt the algorithm to account
for variations in local scale or density of the data, and (3) how to
automatically select the number of clusters. This paper concerns
the former two questions.
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The most common approaches to date rely on simple neighbor-
hood definitions, such ask-nearest neighbor (kNN) graphs orε-
graphs, both which involve parameters that govern the graph den-
sity. However, clustering results may change dramatically for dif-
ferent values ofk or ε. In particular, when the neighborhood graph
is too sparse, clusters break up into individual components that can-
not be aggregated by spectral clustering, while the spectral method
can be unreliable for identifying clusters in an overconnected, dense
graph. Alternatively, one can simply connect all points in a fully
connected graph and rely on a single scale parameterσ to define
the affinity between pairs of points in a weighted graph, which can
be thought of as a fuzzy instance ofε-graphs. In either case, the
optimal choice of these parameters varies with the dimensionality
and across data sets, and more importantly oftenwithin a data set,
as the resulting selection of neighbors or affinities does not adapt
to the local density or distribution of points.

In this paper, we exploitempty region graphs(ERGs) to con-
struct neighborhoods without requiring a particular choice of the
neighborhood extents. In contrast to kNN graphs, which prescribe
the number of neighbors without regard to their relative locations,
empty region graphs account for the spatial distribution of points
to define neighborhoods of varying extent and cardinality, and do
in general not suffer from missing or redundant connections. We
show that these graphs generally improve the accuracy of spectral
clustering algorithms. We also introduce a diffusion-based mecha-
nism that estimates the density based on the average neighborhood
size around a point to define affinities. We show that this local scal-
ing algorithm, when combined with empty region neighborhoods,
results in a better classification that is robust to noise and geometric
transformations of the data points.

We present results on a number of synthetic benchmark data sets,
as well as real multi-dimensional classification problems, including
image segmentation.

2. RELATED WORK
Spectral Clustering. Spectral clustering is becoming a suc-

cessful alternative to techniques based onK-means [21] or den-
sity models [10], and dates back to Donath and Hoffman [8] and
Fiedler [11]. Recently, spectral clustering has found a niche in im-
age segmentation [28], text mining [7] and as a data mining tool
in general [26, 17]. Since then, there has been a trend in improv-
ing spectral clustering through a detailed analysis of the underlying
graph structure [22], the scale and density parameters [34, 1], and
the stability [15] and consistency [33] of the algorithm. Most re-
lated to our work are the techniques that attempt to estimate the
local scale or density to improve spectral clustering of data with
varying densities, shapes and levels of noise. Among the first to
address this problem for data mining were Zelnik-Manor and Per-



ona [34], who improve the general algorithm by Ng et al. [26] with
local scaling. This approach, although effective even in high di-
mensions, was shown to be suboptimal for noisy data sets, or for
data with clusters of different densities [25]. To alleviate this prob-
lem, Nadler and Galun [25] introduce a coherence measure of a
set of points belonging to the same cluster. Although not exclu-
sive of spectral methods, the authors show that it alleviates some of
the intrinsic limitations of spectral clustering. To deal with noise,
Li et al. [19] propose a warping model that maps the data into a
new space more suitable for clustering and more resilient to noise.
Other methods are able to cluster data consisting of regions of arbi-
trary shapes, such as density based clustering [27], and, in a similar
spirit to Zelnik-Manor and Perona’s method, locally scaled density
based clustering [1].

In this paper, we address the problem of locally-scaled and noise
robust spectral clustering. We take a different approach and iden-
tify the problem as early as the selection of the neighborhood graph.
Maier et al. suggest that the construction of the graph has a measur-
able effect on the results of spectral clustering [22]. Inspired by this
paper, we turned to alternative neighborhood graphs, namelyempty
region graphs[3], in an effort to obtain better neighborhoods.

Empty Region Graphs. Neighborhood or proximity graphs cre-
ate a geometric structure that connects two points if they are close
in some sense. These graphs have been well studied and include
the relative neighborhood graph [16], the Gabriel graph [14],β -
skeletons [18],σ -local graphs [2] and Delaunay triangulations [12].
A subset of these, called the empty region graphs, define a neigh-
borhood graph where two points are connected if a geometric re-
gion parameterized by those points does not contain any other point
[3]. These graphs have been well studied in terms of their geomet-
ric properties [6, 3], and have been applied in geographic analy-
sis, pattern recognition and machine learning. Proximity graphs
have been applied to clustering as well. Urquhart et al. [32] use the
Gabriel graph and the Relative Neighbor graph to improve hierar-
chical clustering, noting that these graphs result in natural clusters
that can be separated depending on the local graph density [32].
Carreira and Zemel apply an ensemble of minimum spanning trees
to form neighborhood graphs that are more resilient to noise and
varying densities [4]. Choo et al. propose an agglomerate method
for hierarchical clustering that merges candidate clusters that be-
long to the same connected component in the Gabriel graph [5].

In this paper, we propose the use of the one-parameterβ -skeleton
empty region graph to construct locally-scaled affinity matrices that
improve the accuracy of spectral clustering. We show that this ap-
proach is more effective when combined with a diffusion step that
enhances the block structure of the affinity matrix and, thus, the
separability of clusters.

3. BACKGROUND
Our approach combines neighborhoods defined by empty region

graphs with density estimation techniques and spectral clustering.

3.1 Spectral Clustering
Spectral clustering refers to a general algorithm where data are

clustered into groups based on spectral analysis of a matrix of pair-
wise affinities or similarities between data points. The intuition is
that, based on a similarity graph between points, a good clustering
should partition the graph such that points in the same group are
similar and points in different groups are dissimilar to each other.
The spectral properties of the graph Laplacian helps us partition the
graph in that manner, based on one of the properties of the graph
Laplacian, which states the graph Laplacian has eigenvalue 0 with

multiplicity equal to the number of connected components of the
affinity matrix.

A general algorithm for spectral clustering can be implemented
as follows [26]: Given a set ofn pointsS= {s1,s2, . . . ,sn} in R

d

to be partitioned intoK clusters,

• Construct a neighborhood graph(S,E) (e.g. based onk near-
est neighbors) over the point setS.

• Define the affinity matrixA∈ R
n×n, where

Ai j =

{

exp
(−d(si ,sj )

2

σ2

)

i j ∈ E

0 otherwise
(1)

d is a distance function, commonly Euclidean, andσ is a
scale parameter.

• DefineD as the diagonal matrixDii = ∑n
j=1 Ai j .

• Define the normalized Laplacian matrixL= I−D−1/2AD−1/2.

• Find theK eigenvectors corresponding to the smallest eigen-
values ofL, and form the matrixX ∈Rn×K with these eigen-
vectors as columns.

• Form the matrixY by normalizing the rows ofX, so that

Yi j = Xi j /
√

∑ j X2
i j .

• Treat each row ofY as a point inRK and cluster viaK-means
[21].

• Each pointsi is assigned to a given clusterc if the corre-
sponding rowi in Y is assigned to clusterc.

Clearly, the accuracy of the clustering depends, among other fac-
tors, on the graph densityk and the scale parameterσ . Fig. 1 shows
how k = 3 andk = 7 nearest neighbor graphs with a fixed scale
parameter are used to cluster groups of 2D points, two of which
define small dense clusters, while the third forms a sparse back-
ground. Whenk is small (Fig. 1(a)), important connections are
missing within the background cluster, which is separated into two
components. Increasingk helps connect the background cluster
(Fig. 1(b)), but adds many redundant edges between clusters that
diffuse them and cause the algorithm to misclassify background
points. Varyingk andσ together may improve the results, though
when the point density varies significantly, it may be that no com-
bination ofk andσ yields the correct clustering.

To deal with disparate densities, Zelnik-Manor and Perona define
a more general affinity that incorporates local scaling [34]. Instead
of a single scale parameter, they define the affinity between two
points as:

Ai j = exp

(

−d(si ,sj)
2

σiσ j

)

(2)

whereσi andσ j are the local scale parameters estimated for points
si andsj , respectively. In the original paper, this parameter is de-

fined asσi = d(si ,s
(i)
J ), wheres(i)J is theJth neighbor ofsi . In prac-

tice, it was found that a single setting,J = 7, gave acceptable re-
sults.

Although local scaling tends to improve the clustering, we found
that the quality of the results using this approach still depends on
finding the right combination ofk andJ, and that these choices are
dependent on the dimensionality of the domain. Furthermore, as
we will discuss in Section 5, a single value ofJ may not correctly
cluster data in the presence of noise or under nonlinear geometric
transformations.



(a) 3NN (b) 7NN (c) 2-Skeleton (d) 1-Skeleton

Figure 1: Proximity graphs and clusters for kNN and the β -skeleton. The sparsity of 3NN disconnects the “background” cluster,
while 7NN adds many spurious connections between clusters, leadingto poor separation. By constrast, at only 2.5 edges per point,
the 2-skeleton generates the correct clustering via a more judicious choice of edges, as does the 1-skeleton using 3.9 edges per point.

3.2 Empty Region Graphs
In addition to graphs based solely on absolute or relative dis-

tances between points, a number of alternative proximity graphs
have been proposed, such as the relative neighbor graph (RNG)
and the Gabriel graph (GG), as surveyed by Jaromczyk et al. [16].
A family of these, known collectively as theempty region graphs,
are more representative of the neighborhood of a point and less
redundant than kNN, and are more efficient to compute than sim-
plicial tessellations such as the Delaunay triangulation, particularly
in high dimensions.

Definition 1. A graphG(S,R) = (S,E) is an empty region graph
if for every edge(p,q) ∈ E, a canonical regionR(p,q) ⊆ R

d does
not contain any other point inS:

pq∈ E ⇐⇒ R(p,q)∩S=∅ (3)

whereRdefines the neighborhood and is called theempty region.

Some common ERGs are:

Nearest Neighbor Graph (NNG). This is the directed graph that
results from the empty regionR(p,q) formed by the opend-ball
centered onp with radiusd(p,q).

pq∈ E ⇐⇒ ∀r ∈ S, d(p, r)≥ d(p,q) (4)

Relative Neighborhood Graph (RNG). This graph is defined by a
lune-shaped region consisting of the intersection of twod-balls of
radiusd(p,q), one centered onp and the other centered onq, i.e.,

pq∈ E ⇐⇒ ∀r ∈ S, max{d(p, r),d(q, r)} ≥ d(p,q) (5)

Gabriel Graph (GG) . This is the graph defined by ad-ball cen-
tered at12(p+q) with diameterd(p,q), i.e.,

pq∈ E ⇐⇒ ∀r ∈ S,
√

d(p, r)2+d(q, r)2≥ d(p,q) (6)

β -Skeleton. The so-called lune-basedβ -skeleton is a one-parameter
generalization of the RNG and GG, defined as follows:

• For 0< β < 1, the empty region is the intersection of alld-
balls with diameterd(p,q)/β that havepandqon the bound-
ary.

(a) 1< β ≤ 2 (b) β = 1 (c) 0 < β < 1

Figure 2: Empty regions parameterized byβ .

• For β ≥ 1, the empty region is the intersection of twod-

balls with diameterβd(p,q) centered at(1− β
2 )p+

β
2 q and

β
2 p+(1− β

2 )q.

It follows thatβ = 2 gives the RNG, whileβ = 1 is the GG. Fig. 2
depicts the geometric regions associated with different values of
β . Finally, we note that geometric inclusion of one region within
another also implies a partial order of the resulting neighborhood
graphs (in terms of their edges), so that:

RNG⊆GG⊆ (β ≤ 1)-skeleton (7)

This observation is key, since it allows us to explore neighborhood
graphs of varying density using a single parameter,β , without the
problems associated with kNN orε-graphs. Section 5 provides em-
pirical results that suggest that the clustering is far more stable for
different values ofβ than they are for variations ink andσ .

4. APPROACH
We now motivate the use of empty region graphs for representing

the neighborhood around a point, and consequently, for shaping the
affinity matrix, and describe a general method for its application in
spectral clustering.

4.1 Constructing the Neighborhood Graph
As a first step, we construct theβ -skeleton of the data points for

a given valueβ ∈ (0,2]. As described above,β -skeletons parame-
terize the neighborhood graph of a collection of points in a different



(a) 6NN

(b) GG

Figure 3: Two proximity graphs and their corresponding affin-
ity matrices (a) 6NN, (b) 1-Skeleton, or Gabriel graph (GG).
The bridging node between clusters destroys the block struc-
ture of the affinity matrix. While this is pronounced for the
6NN, it only affects two nodes (B and C) for the GG.

way than kNN does. In this paper we show that those graphs lead
to better clustering than kNN graphs.

Graphs such as thek-nearest neighbor graph are susceptible to
short circuiting nearby clusters when extra points lie between the
clusters. As shown in Fig. 3(a), separating the two clusters is diffi-
cult due to the connecting node. In fact, the corresponding affinity
matrix is formed by two blocks that overlap, and a large number of
off-diagonal elements.

A β -skeleton alleviates this problem, as illustrated in Fig. 3(b).
In this case, the connecting node (which may be due to noise or the
presence of a smaller cluster) is joined to each cluster via a single
edge. In the resulting affinity matrix, there are three blocks, but
the off-diagonal elements are confined to the vicinity of pointA.

4.2 Local Scaling
Now we show thatβ -skeletons provide better estimates than kNN

of the local scale of a point. This local value defines the scale
parameter for the computation of the affinity matrix. Using local
scaling allows a pair of points within a high-density cluster to be
assigned the same affinity as a pair of points in a low-density clus-
ter when their separation in relation to the local scale is the same.

A natural measure of the local scale around a point include func-
tions of the distance to its neighbors, such as the mean or the me-
dian distance. These measures can be brittle inkNN graphs, as
suggested by Zelnik and Perona [34], and as studied by Maier et
al. [22]. Picking the distance to an arbitrary nearest neighbor may
prove more effective, but is sensitive to density changes and noise.

Here, we provide an initial estimate of the local scale using the
mean or the median distance to a point’s neighbors in an empty re-
gion graph. These measures make sense for these graphs since they
approximate locally the spatial extents associated with each point.
To illustrate this, consider the points in Fig. 4(a), connected in a
6NN graph. The dashed circle associated with each point has a ra-
dius equal to the average distance of the point to its neighbors, and
can be understood as a representation of the local scale. Naturally,
over-connecting the points results in artificially large local scales.
The larger the local scale, the higher the affinity is of a point with a
neighbor enclosed in its respective dashed circle. In Fig. 4(a), there
is a high affinity between the points near the boundary of both clus-
ters. The 3NN graph, in contrast, produces smaller local scales
and clearly separates the two clusters (Fig. 4(b)). However, finding

(a) 6NN (b) 3NN

(c) 1-skeleton (no diffusion) (d) 1-skeleton (diffusion)

Figure 4: Average distance to neighbors as a measure of local
scale. (a) Poor scale estimate due to an overconnected graph.
(b) Better scale estimate using a sparser graph. (c) GG further
improves the local scale, except for cluster boundary nodes. (d)
Diffusion corrects the scale of boundary nodes.

the appropriatek parameter for a kNN graph proves difficult. In
contrast, the mean distance to the neighbors in the 1-Skeleton is a
good estimator of the local scales required to cluster the points ac-
curately, as shown in Fig. 4(c). Note that the local scales for each
cluster is roughly the same as in the 3NN, except for the extremes of
the edge connecting the two clusters, where the local scale is larger
than expected, and one runs the risk of clustering them together.

This behavior, the estimation of larger scales for nodes connected
via intercluster edges, is the result of using aβ -skeleton, which is
well connected. One might consider the use of the median distance
to exclude outliers and solve the problem, but this technique may
fail when the neighborhood graph is sparse A more fundamental
problem are small “cliques” of a few close points that are embed-
ded in a larger cluster. Their median neighbor distance may be far
smaller than the scale suggested by the surrounding density, result-
ing in artificially small local scales and poor affinity with the rest of
the cluster. To avoid this, one must analyze the local scale by look-
ing not only at the immediate neighbors of a point, but at a possibly
larger set.

To address this, we introduce a propagation mechanism based
on non-linear diffusion, which improves the estimate of the local
scale of a point by querying the scale of its neighbors, similar to
reachability in density based clustering [27].

4.3 Diffusion-based Scale Refinement
To deal with the local scale of boundary points, one must en-

sure that a boundary point has a local scale so that points outside
the cluster exhibit less affinity than those within the same cluster.
In turn, those neighbors in the same cluster should exhibit affinity
with their neighbors, and so on. Thus, the local scale of a point is
affected by points that may not be immediate neighbors.

To determine the local scale, we use non-linear diffusion, such
that the local density of a point (inverse of the local scale) is it-
eratively blended with the local densities of its neighboring points.
Because shorter edges are likely to correspond to points in the same
cluster, we use inverse distance weighted kernels, such as Gaussian
or inverse polynomials.

The method works as follows: we start from an estimate of the
local scaleσ0

i of a pointsi as the mean or median distance to its



neighbors in the neighborhood graph. We iteratively refine the local
scale for some iterationst ∈ {1, . . . ,T},

σ (t)
i =



 ∑
j∈ N(si)∪{si}

ŵ(t−1)
i j

1

σ (t−1)
j





−1

(8)

whereN(si) is the neighborhood of pointsi (using aβ -skeleton),
and the weights are normalized kernels, defined as the product of
two GaussiansG(d,ρ) = exp(−d2/ρ),

ŵ(t)
i j = w(t)

i j /∑k w(t)
ik (9)

w(t)
i j = G(d(si ,sj ),ρD)×G(|σ (t)

i −σ (t)
j |,ρC) (10)

The first kernel blends the scales of nearby points, and ensures that
intracluster scales are made more uniform than intercluster scales.
The parameterρD, calleddiffusivity, controls the speed at which
diffusion propagates the local scales in terms of the distance be-
tween points. Diffusivity alone, however, makes the scales con-
verge to a uniform value for the entire graph. We then introduce an
additional kernel that penalizes the weight when the difference in
scale is high, similar to bilateral filtering in image denoising [30].
The parameterρC, or conductivity, controls how fast the diffusion
propagates along scale discontinuities.

Note that we diffuse the local density instead of the local scales,
similar to equivalent kernel density estimators [9], where the recip-
rocal of the local scale approximates the density of a point. We
found this approach more accurate than blending the local scales.

4.3.1 Parameter Selection
Our approach, although designed to eliminate the selection of

a global parameterk for the number of neighbors orσ for the
global scale, requires the selection of different parameters, namely
β , which controls the density of the neighborhood graph, and the
diffusion parameters,T, ρD andρC. Unlike the exploration ofk
and σ , we have found that parameterizing the graph density via
β allows for more resilience to changes in point density, e.g. by
limiting the number of intercluster edges. On the other hand, the
diffusion parameters are inter-dependent. A largeρD may result in
convergence to the same solution as a smallρD with only a fraction
of the number of iterationsT. Moreover, these diffusion parameters
are similar to those used in kernel density estimation and diffusion
in general, and have been well studied [20].

To illustrate the sensitivity of our algorithm to these parame-
ters, we conducted an experiment to find the pair of parameters that
yields the best clustering of the data set depicted in Fig. 5(a). We
compared five scenarios: (1) Global scaling [26], defined in terms
of number of neighborsk and global scaleσ , (2) local scaling [34],
in terms of number of neighborsk and local scale neighborJ, (3)
our local scaling using graphs of different density via the parameter
β , (4) our diffusion approach for a fixedβ = 1 andρC = 1, in terms
of diffusivity ρD and number of iterationsT, and (5) our non-linear
diffusion approach, in terms of the diffusivity and conductivity pa-
rameters, while keeping a constant number of iterationsT = 10.
Fig. 5 shows the results for this experiment, depicted as surfaces of
the normalized mutual information (NMI)—higher is better—for
a discretization of their respective parameters. Global scaling is,
not surprisingly, the most sensitive approach, and the optimal clus-
tering is only achieved within a narrow interval of values. Local
scaling in this case exhibits optimality for a fixed interval of the lo-
cal scale. However, overshooting this interval produces drastically
sub-optimal results. In contrast, exploring the graph density us-
ing β instead ofk exhibits little sensitivity forβ > 0.7. The same
can be said about the diffusion parameters. Typically, we setρD

(a) Example (b) Global scale

(c) Local scale (d) β , (T = 10,ρD = ρC = 1)

(e) Diffusion,(ρC = 1,β = 1) (f) Conductivity (T = 10,β = 1)

Figure 5: Sensitivity of clustering to various sets of parameters.

andρC to 1. We believe bandwidth selection algorithms for ker-
nel density estimation can be used towards improving these initial
estimates [9].

4.4 Constructing the Affinity Matrix
Finally, once we determine the local scale associated with each

point, we construct the affinity matrix as

Ai j =







exp

(

−d(si ,sj )
2

σ (T)
i σ (T)

j

)

(i, j) ∈G(S,R(β ))

0 otherwise
(11)

whereR(β ) is an empty region template, parameterized byβ . Al-
gorithm 1 summarizes the full algorithm.

4.5 Complexity and Time Analysis
We now describe the computational cost of the key steps in our

algorithm.
Construction of ERG. Constructing an ERG can be expen-

sive. A brute-force implementation requiresO(n3) time, which
is prohibitively expensive for most practical applications. How-



Algorithm 1: New algorithm for spectral clustering using
empty region graphs.

input : Data pointsS= {s1, . . . ,sn}, number of clustersK,
number of iterationsT, diffusion parametersρD,ρC

output: ClassificationC

G← ERG(S) Construct ERG
for i← 1 to n do

Ni ← NEIGHBORS(G,si)

σ (0)
i ← LOCALSCALE(si ,Ni) Estimate initial local scale

for t← 1 to T do
for i← 1 to n do

Ni ← NEIGHBORS(G,si)

Σi ←{σ
(t−1)
i }

for j ∈ Ni do

Σi ← Σi ∪{σ
(t−1)
j }

σ (t)
i ← DIFFUSE(Σi ,ρD,ρC) Update local scale

A← AFFINITY({si},{σi}) Compute affinity matrix
C← SPECTRALCLUSTER(A) Cluster using Laplacian of A [26]

ever, there are known algorithms that compute the RNG and GG in
O(n2) time [31, 24].

We further reduce the computation cost of obtaining an ERG by
restricting the neighbor search to thekmax nearest neighbors of a
point, wherekmax is usually a constant factor larger than thek value
selected fork nearest neighbor graphs, butkmax≪ n. The overall
complexity of computing such a kNN graph is

O(n2 logkmax),

and the additional cost of computing an ERG becomes

O(nk2
max) time.

Diffusion. The diffusion process involves a sequential walk on
the neighborhood graph and requiresO(|E|T) time, whereT is the
number of iterations and|E| ≤ nkmax is the number of edges in the
graph.

Solution of Eigenvector Problem. In general, computing the
eigenvectors of the Laplacian matrix takesO(n3) time, but, as de-
scribed by Song et al. [29], sparse eigensolvers, such as the variants
of Lanczos/Arnoldi factorization (e.g.,ARPACK), have a cost of

O(m3)+(O(nm)+O(nkmax)+O(m−K))× (# restarted Arnoldi)

wherem> K is the Arnoldi length used to compute the firstK
eigenvectors of the affinity matrix.

Clustering the spectrum. Finally, usingK-means to cluster the
eigenvectors has a cost ofO(nK)× (# K-means iterations).

Overall, as suggested by Song et al. [29], as the data size grows
larger, the cost of the clustering becomes dependent on the con-
struction of the affinity matrix. Nonetheless, the additional cost of
computing an ERG instead of a kNN is relatively small. According
to our results, this marginal increase is well worth the benefits of
using theβ -skeleton instead ofk-nearest neighbors.

5. RESULTS
We have validated our algorithm with a number of low dimen-

sional synthetic data sets and a few (higher-dimensional) real clas-
sification problems. To compare the quality of these datasets, we

measure the normalized mutual information (NMI) between the
clusteringX and the ground truth classificationY:

NMI(X;Y) =
2I(X;Y)

H(X)+H(Y)
(12)

whereI(X;Y) is the mutual information betweenX andY andH(X)
andH(Y) are their entropies, respectively.

5.1 Sensitivity to Transformations
To illustrate the benefits of using theβ -skeleton, we analyzed

the results of our algorithm compared to traditional approaches us-
ing k-Nearest Neighbors (kNN) when applied to transformations of
a synthetic data set. We compare three types of transformations:
geometric distortion (shear transformation), decimation (where we
remove 0.05Dn points, for a decimation factorD∈ {1, . . . ,10}, and
noise (where we perturb the data with Gaussian noise of increasing
standard deviation). Fig. 6(a) compares the result of clustering a
2D data set consisting of three concentric rings under these three
transformations. Fig. 6(b) shows quality surfaces for the different
transformations and different values of the main parameters for our
method (β andT) vs. the number of neighborsJ used to define the
local scale in kNN-based methods (as a reference, Zelnik and Per-
ona’s method usesJ= 7). The quality of the clustering increases as
the color of the surface approaches yellow. Notice how the optimal
value for kNN methods (bottom) varies depending on the degree of
distortion, decimation or noise. For our method, the quality con-
verges as we increase the number of iterations and is less sensitive
to the transformation itself.

A similar analysis was performed for other data sets, as shown in
Fig. 7. Here, we show the mean, minimum and maximum quality
for different values ofβ using our approach (blue), and for differ-
ent values ofk (global scale—green) andJ (local scale—red) for
kNN methods. In general, we observed a higher quality for empty
region graphs and a lower variance when compared to globally-
scaled clustering. Particularly for the first two rows, our approach
is also better than locally-scaled clustering based on kNN. Note
an important exception, the fourth row, consisting of small clus-
ters surrounded by a random noisy background.β -skeletons do
not cluster data as well on this data set, and in other similar cases.
Locally-scaled kNN based methods are able to segment these be-
cause a small number of neighbors is able to keep them discon-
nected, while ERGs are always well-connected.

5.2 UCI Benchmarks
We validated our approach on multi-dimensional data sets from

synthetic generators and the UCI Machine Learning repository [13].
The results are summarized in Table 1. We compare our approach
using theβ -skeleton (the parameterβ chosen and number of iter-
ations are reported next to each, forρD = 0.1 andρC = 1) with
conventional clustering using kNN and (1) global scaling, (2) local
scaling [34], and (3) DBSCAN, a density-based approach [27]. In
all these cases, we report the best results obtained after exhaustively
exploring their key parameters (k andσ for global-kNN and DB-
SCAN,k for local-kNN andβ andT for ours). As seen in the table,
it was possible to find a suitable neighborhood graph using theβ
parameter that produces better results than exhaustive search of the
parameters of other conventional algorithms. Although the density
of the graph increases with the number of dimensions, the explo-
ration of theβ parameter allows us to get the necessary density to
cluster the higher-dimensional data sets. Similar to the results in
Fig. 7, we also observed that quality is less sensitive toβ than to
values ofK.
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Figure 6: (a) Results of clustering data undergoing transformations (geometric distortion, decimation and noise). (b) Clustering
quality in terms of the transformation severity and algorithm parameter. From top to bottom: β and T in our algorithm, and the
local scale given byJ in [34].

5.3 Image Segmentation
Finally, we applied our method to image segmentation, where

each pixel is defines a five dimensional point of its pixel coordinates
x andy, and the color intensities in theL∗u∗v∗ color space. In all
these results, the number of clusters is picked manually. Fig. 8
shows three examples from the Berkeley Segmentation Dataset and
Benchmark [23]. Note how ERG based methods produce visually
better clusters, while methods such as local scaling result in over-
segmentation. Notably, Fig. 8(c) demonstrates the importance of
good neighborhood graphs for local scaling. Attempting to separate
this image into two segments proves difficult with a global scale
using kNN, and users must resort to over-segmentation (4 clusters
instead of 2). In our case (leftmost panels), the Gabriel graph is
able to segment the airplane using both 2 and 4 clusters.

6. SUMMARY AND CONCLUSION
A fundamental problem in clustering is defining a neighborhood

graph that defines how similar two data points are. This paper in-

troduces a more natural parameterization of the neighborhood den-
sity based on theβ -skeleton. We showed that usingβ to define
the affinity between points provides higher quality than the preva-
lent approach of pickingk nearest neighbors or finding a global
scale parameter. We have also shown that our clustering results are
far less sensitive to the choice ofβ and the diffusion parameters
(diffusivity and conductivity), and to data transformations such as
perturbations and geometric distortion.

Our diffusion-based local scaling approach proves effective for
clustering irregular data sets and estimating the correct local scale
at each point, despite the fact that the empty region graphs we ex-
plore (supersets of the relative neighbor graph), are well-connected.
We must point out that we introduce additional parameters to tune
the diffusion mechanism, but these are well known in other do-
mains where diffusion is applied, and there are methods for choos-
ing them. From a practical standpoint, one can define heuristics to
explore the parameter space efficiently. As a rule of thumb, one
defines the diffusivity parameter as the smallest scale one wants to
preserve in the data set, if that information is known, for example,
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Figure 7: Average clustering quality (NMI – higher is better) of various 2D data sets as a function of transformation severity for
our algorithm (blue), globally- (green) and locally-scaled (red) clustering based on kNN. Each curve shows the mean, maximum and
minimum NMI while varying β ∈ [0.8,2.0] (blue), k ∈ [2,20] (green) or local scaleJ ∈ [1,20] (red). The β -skeleton provides higher
quality than global scaling, and far less variance. Compared to localscaling, our algorithm performed better except in the last row.

when interested in the presence (or absence) of data features of a
given size (e.g., in medical image segmentation).

In our experiments, we often apply the 1-Skeleton as an initial
candidate for generating the affinity matrix. Over-segmentation
may be an indication that the graph is too sparse and one might
explore other graphs withβ < 1. Conversely, when one suspects
that the result is under-segmented, one may explore sparse graphs,
with 1 < β ≤ 2. Our approach can be extended in a number of
ways to retrieve the number of clusters automatically, as suggested
by approaches like [34, 1]. We believe our approach, proving to
be resilient to noise and other types of data perturbations, is a step
forward towards robust spectral clustering, and may have broader
applications where a neighborhood graph is required.
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