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We present a variant of the Taylor diagram, a type of 2D plot that succinctly shows the relationship between two or
more random variables based on their variance and correlation. The Taylor diagram has been adopted by the climate and
geophysics communities to produce insightful visualizations, e.g., for intercomparison studies. Our variant, which we
call the Mutual Information Diagram, represents the relationship between random variables in terms of their entropy
and mutual information, and naturally maps well-known statistical quantities to their information-theoretic counter-
parts. Our new diagram is able to describe non-linear relationships where linear correlation may fail; it allows for
categorical and multi-variate data to be compared; and it incorporates the notion of uncertainty, key in the study of
large ensembles of data.
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1. INTRODUCTION

Making sense of statistical data from observation and sitiori is challenging, especially when data is surrounded by
uncertainty. Dealing with uncertainty is a multi-facetedgess that includes the quantification, modeling, propaiga
and visualization of the uncertainties and errors intansithe data and arising from data transformations. In this
paper, we focus on the visualization of uncertainty.

One common task in uncertainty studies is the comparisorifigheht models to determine whether they are
effective in explaining the observed data. In the past,lhisbeen addressed as finding correlations and similarities
between data distributions generated from the differerdetsy and quantifying the fit between the model and the
observation via statistical analysis. Visualization godypically scatter plots or plots of summary statistiegc{sas
means and variances), often restrict the analysis to pg@raomparisons. A full comparison among a large number
of models quickly becomes impractical.

To address this issue, Taylor [1] developed a succinct pidtrepresents several statistics of two random variables
simultaneously, now commonly referred to as the Taylordiag This plot, quickly adopted by the geophysics and
climate communities as the de facto standard for perforrmiteycomparison studies [2], relates three key statistics
that describe the relationship between two variables imseuf their variances, their correlation, and their certtere
root mean square (CRMS) difference.

The Taylor diagram supports important tasks such as meastiné similarity between two variables, understand-
ing the observational uncertainty of a variable of interasid measuring the improvement of the model skill after
refinement, e.g., after increasing the number of sampldseofdriables or changing the sampling strategy.

However, not all relationships can be explained in termsaofwce and correlation alone. In many cases variables
exhibit non-linear dependence, a fact that cannot be dbyiidentified using linear correlation. In other cases hia t
presence of outliers, two variables may exhibit low cotiefa while otherwise being relatively similar.

Motivated by these limitations, we propose a new type of,glee Mutual Information Diagram(MID), which
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incorporates other types of relationships between twaibligtons to highlight those similarities and differencest
identifiable via statistical quantities. Our approach iamalyze the similarity between two distributions in ternfis o
their shared information. Specifically, our diagram représ the marginal entropies of two distributions, their malit
information, and theivariation of information3]—a metric over the space of probability distributions.

This new information-theoretic plot has certain advansageer its statistical predecessor, in that it can expose
non-linear relationships between distributions, it isléas sensitive to outliers (e.g., due to noisy measurenoents
partially corrupt or missing data), and unlike the Tayloagtiam it is applicable to both numerical and categorical
data.

We show a number of examples where we use the MID to compdesetit models and make inferences about the
sensitivity and uncertainty of multiple variables in anem$le of simulations. Based on our results, we believe the
proposed technique is a useful visualization tool that eanded in conjunction with the traditional Taylor diagram
and other graphical representations to highlight the diffeaspects that relate a collection of distributions.

2. RELATED WORK

Visualizing differences and similarities between models been a challenge since the generation of the first statisti
diagrams. The extension of scatterplots to handle muitatarelationships has led to metaphors such as the scatter
plot matrix and views of parallel coordinates [4]. Howeuhgse visualizations seldom scale up to a large number of
distributions. Instead, it becomes more effective to siemdously visualize several distributions. Trend chalds p
distributions in a single diagram to reveal correlationsia@ile charts improve trend charts with statistical infiar

tion, such as the minimum, maximum, percentiles and theand8i. To improve scalability, a common strategy is to
turn to summary measures of the data, such as first and sexbercstatistics. The Boxplot, for example, is a diagram
that represents several statistics of a distribution tiifaie visual comparison [6]. Several extensions havenle-
posed, such as the Violin plot [7], the Beanplot [8], and mtlsiggested by Benjamini [9]. In an attempt to provide
a general solution, Potter et al. provide a unified frameviorksisualizing summary statistics and uncertainty [10].
These plots are primarily designed to highlight statistica variable or a distribution, but do not intrinsically ede

the relationship between two or more variables, since thepfien embedded in the original metric space of the data.
Our diagram, on the other hand, maps distributions or vea$aio points in a 2D metric space where distances encode
the variation of information between distributions.

Closest to out work is the Taylor diagram, proposed by Kayldiao visualize the correlation and RMS difference
among several variables [1]. In his diagram, a random vkrigplotted as a point in a 2D plane whose location is
given by the standard deviation and correlation with resfmea reference variable. Because of the way this diagram
is created, the distance to the reference model in thisaiagorresponds to the centered root mean square difference
(the RMS difference after subtracting off the mean). In fhaper, we propose a new diagram based on information
theory instead of first and second order statistics. In cagrdim, the location of a model is given by its entropy and
its mutual information with a reference distribution.

Mutual Information analysis has been shown to be an effeatisy of comparing clusterings and studying rela-
tionships between time-series, and has been applied sfigltg& information security and gene expression analysi
[11, 12]. Numerous methods have been proposed to estimgitebiwopy and mutual information, some of which rely
on estimating an underlying probability density functigrdoectly estimating these quantities via fitting [13—15i.
this paper, we are not concerned with how to estimate enogymutual information, but rather with how to present
this information intuitively in a diagram that retains @t metric properties [12, 16].

3. BACKGROUND
3.1 The Taylor Diagram

The Taylor diagram is a graphical representation of thessi@l relationship between two random variables. This
diagram represents three population statistics relatimgviariables simultaneously: their standard deviatiohsirt
correlation and their centered root mean square differe@nsider two discrete random variablésandY of n
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corresponding values each, with mgan and uy and standard deviatiomy and oy, respectively. LeRyy denote
Pearson’s correlation coefficient

cov(X,Y
XY = VX, Y) 1)
0xO0y
where .
1
COVX.Y) = £ 5 (X = 1) 35 = ) 2)
is the covariance betweetiandY. The centered RMS difference betwe¢mandy is
1h 2
RMSX,Y) = H_Zl((xi—ux)—()’i—uv)) ©)
1=

The Taylor diagram exploits the triangle inequality fornigdthese statistics:

RMSX,Y)? = 0% + 02 — 20x 0y Rxy
= 0% 4 02 —2coUX,Y) (4)
= cov(X,X) +cov(Y,Y) —2covUX,Y)

The diagram is a polar plot based on the law of cosines:
¢? = a® + b? — 2abcosd (5)

The Cartesian coordinates of a variablevith respect to a reference variablare thus given byoy cosfxy, oy sinbxy),
with Oxy = cos *Rxy. These quantities are shown graphically in Fig. 2(1).

Although half Taylor plots, which show only one quadrang aommon, we here compare to the full Taylor
diagram, which uses two quadrants to represent both pesitid negative correlations.

One of the limitations of the Taylor plot is that it is assuntbdt the similarities and differences between two
distributions can be explained solely using correlatiod atandard deviation. However, this may not be the case
for many distributions. Anscombe highlights this issue dvacate the use of diagrams in lieu of purely statistical
reporting of the data [17]. As part of his argument, he delessimple set of synthetic data sets, all of which have the
same correlation and standard deviation, but that arelgléiffierent. This has become known as Anscombe’s quartet,
three of which are depicted in Fig. 1(1). For these distidng the correlation between any Bf C andD with A
(aj =1) is about 0816 and their standard deviation i©93. Therefore, all three distributions appear at the exaties
position in the Taylor diagram. But clearly the distributtsoare not the same, nor do they exhibit a similar degree of
randomness and dependenceforTo better capture this dependence, we resort to informatieoretical quantities
such as entropy and mutual information, as described below.

3.2 Entropy and Mutual Information

Entropy is a measure of the uncertainty associated withdorarvariable, or, alternatively, a measure of the amount
of information contained in a distribution. For a discreigtigbution X, the Shannon entropy is defined as

H(X) = = 3 P logp(x) ©)

wherep(x;) is the probability of an outcoms.
Shannon'’s entropy applies to discrete distributions. Aicoilous definition of entropy, also known diferential
entropy is defined as

h(X) = — /X f(x)log f (x)dx )
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FIG. 1: (1) Three distributions from Anscombe’s quartet [17], dllxdich have the same correlation and standard
deviation but that have a different degree of randomnessiapendence oA. (2) In the Taylor diagram, they appear
in the same position and we cannot distinguish their depaeenA. (3) In the Mutual Information Diagram, the
three distributions appear at different locations and sagthatD shares more information with thanB andC do.

wheref(x) denotes the probability density.
Kraskov et al. [13] showed that the discrete and differéetigropy can be related via an approximation

H(X) ~ h(X) — logA )

by considering the limit limy_,oH (X) of discrete entropy, wher is the discretization length.
Mutual information (MI) describes the information that taistributions share [13], and is defined as

vy p(X,y)
1(X;Y) —x;ye p(x,y)log IO 9)

where p(x,y) is the joint probability ofX andY, and px(x) and py(y) are the marginal probabilities of andY,
respectively. Alternatively, one can express mutual imfation as

[(X;Y) =H(X)+H(Y)-H(X,Y) (20)

whereH (X) andH (Y) are the marginal entropies ahl{X,Y) the joint entropy oX andY.

When the mutual information of two distributioXsandY is zero, knowingX does not give any information about
Y and vice versa, i.eX andY are independent. Conversely, sintdé€X, X) = H(X), the mutual information of two
identical distributions equals their entropy.

Estimating entropy and mutual information is challengiagd different methods have been proposed in the
past [11, 13]. One of the most commonly used methods estithateinderlying joint and marginal distributions
first, using non-parametric models such as histograms oekeensity estimators. Alternatively, one can attempt to
estimate these quantities using model fitting, as suggést&ilizuki et al. [15]. In this paper, we compute entropy
and mutual information using kernel density estimation EyDLater on in Section 4.5, we show how the resulting
diagrams differ depending on the parameters used for KDtho#ibh these estimates may not be optimal, the study
of the accuracy of entropy and mutual information estimaegell beyond the scope of this paper.
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FIG. 2: Relationship between the Taylor diagram and the Mutuakin&ion diagram. (1) The Taylor diagram relates
standard deviationy, correlationRxy and centered root mean square error RMS. (2) Analogougl\R¥i-based Ml
diagram relates root entrophy, normalized mutual information NMI and root variation ofanmation RVI. (3) We
may also define the MI diagram in terms of entropies, whichtesl entropy (Y), a scaled and biased version of MI
and Variation of Information VI. Note that this plot spanotquadrants.

4. MUTUAL INFORMATION DIAGRAM

In this paper, we propose a new type of plot, called the Mutufairmation Diagram (MID), which is the analogous
version of the traditional Taylor diagram in terms of inf@tion and uncertainty. To arrive at such a diagram, we first
describe the key relationship between entropy and muté@inmation.

4.1 Triangle Inequalities Involving Entropy

To extend the traditional Taylor plot, we examine trianglequalities in information theory over probability dibtii
tions. In particular, we make use of the metric known asvitéation of Information(VI) between two distributions
X andY [3], defined as:

VIX,Y)=HX) +HY) =2106Y) = 1OGX) + (YY) = 21(XY) (11)
This quantity is in fact a metric, and satisfies propertisshsas non-negativity, symmetry, and triangle inequality.
Now let us consider the quantit(X,Y) = I(X,Y), which we show is also a metric.
Lemma 1.] ]

If d(X,Y)? is a metric, then so id(X,Y).

Proof. We need to prove four properties:
i. d(X,Y) > 0. This follows from the definition odl as the principal square root df.
i. d(X

(

(X, 0 <= X =Y. This follows fromd? being a metric, and thu$(X,Y)2=0 <= X =Y.
iii. d(X,

d(X,

Y)=
Y) = d(Y, X). This follows fromd(X,Y)? = d(Y, X)?.
iv. Z) <d(X,Y)+d(Y,Z). Sinced? is a metric, we have

(d(X,Y)+d(Y,2))2 = d(X,Y)2+d(Y,Z)%+ 2d(X,Y)d(Y, Z)

As a consequence, sindés non-negative, we havdfX,Z) < d(X,Y)+d(Y,Z).
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O

Because botd andd? are metrics, we may consider diagrams analogous to theffalgidnvolving either metric.

4.2 RVI-Based Diagram
We begin by considering = RVI = /VI as a metric, and explore the similarities between Eqs. 4 dndLkt

hx = /H(X) andhy = \/H(Y). Then
RVI(X,Y)? =H(X) +H(Y) - 21(X;Y)

2 2 1(X;Y) (12)
—hx“rhy_ZhXhY hyhy

This suggests the following mapping between quantitiebenmaylor diagram and our new diagram:

— ErrorRMSX,Y) <= root variation of informatiorRV I(X,Y).
— Varianceo% <= entropyH (X).

— Covariance cofX,Y) <= mutual informatiorl (X;Y).

_ - _ CoUX.Y) — Xy
CorrelationRyy N <= NMIlxy HOOR(Y)"

HereNMIyy denotes theormalized mutual informatiobetweenX andY [12]. Note also that = cov(X,X) and
H(X) = 1(X;X).

Analogous to the traditional Taylor diagram, we build our ditigram by plotting in polar coordinates the (root)
entropyhy of distributionY at an angle defined bxy = cos NMIxy.

One aspect to mention about this diagram is that mutualrmdition is non-negative, and thusONMIxy < 1,
while the correlatiorRxy lies in the interval—1,1]. In other words, in this diagram, negative correlations nap
positive mutual information. Fig. 2 shows the mapping betwthe Taylor diagram and the Ml diagram.

4.3 VI-Based Diagram

The RVI-based diagram defines distances in terms of the iy hy instead of the actual entropy. In some cases,
it becomes easier to read these diagrams if they are defintedhiis of entropy and VI. Revisiting Eqg. 11, we obtain
another relationship by squaring both sides:

VI(X,Y)? = (H(X) +H(Y) = 21(X;Y))?
(13)
=H(X)2+H(Y)? = 2H(X)H(Y)cxy
with H(X,Y
Ccxy = 2l (X;Y)HO(()':'(% -1 (14)

The quantitycxy is a biased and scaled version of the mutual information.ikdrthe RVI-based diagram, the
VI-based diagram measures a scaled mutual information:

H(X,Y)

svvnxyzl(x;\()W

(15)

Similarly, we now define the coordinates of a point using thieapyH (Y) and an angle defined Bxy = cos  cxy.
This new plot placesxy in the rangd—1,1]. Fig. 2(3) shows the plot and the corresponding quantities.
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4.4 Properties

Compared to the traditional Taylor diagram, based on caxag, the MI diagram based on mutual information has
certain advantages:

i. Mutual information is able to capture both linear and rioear correlations.

ii. Our new diagram is not limited to numerical data, but césode used to plot categorical data, e.g., to show
similarities in clusterings, classifications and symbeskguences.

iii. Entropy and mutual information are rather insensitigeoutliers. Even a single outlier can arbitrarily impact
both the variance and correlation between two distribgtitimus obscuring the similarity of two closely related
variables.

iv. Although not explored in this paper, our framework has giotential to be extended to show correlations be-
tween multivariate distributions (using multivariate M&s well as between combinations of two or more dis-
tributions and a reference distribution (using co-infotio&), e.g., to explain interactions between multiple
variables.

4.5 Entropy Estimation

Unlike the Taylor diagram, which uses statistics that canlibectly derived from the discrete sample data, Ml di-
agrams require an estimation of the underlying probabdipsity functions [18]. Alternatively, one can directly
estimate the mutual information and entropies withoutiekpl estimating the underlying density [13]. It is not the
focus of the paper to propose a new or suggest a preferreadchfethestimating the mutual information, so we adopt
techniques found in the literature, some of which estintageunderlying probability density first.

To demonstrate how the choice of the method affects the alimgwe have computed the mutual information
and entropy of a number of bivariate normal distributi@g with marginal probability distribution& ~ N(0,1),
Yij ~ N(0, 07) and correlatiorR; with respect tX, for o; € {0.5,1.5} andR; € {0.5,0.8,0.9,0.95,0.99} for a number
of methods. These include four methods that estimate tHmapilities using histograms, adaptive gaussian filtering
(AGF) [19], k nearest neighbors, and kernel density estimation (KDE)yelsas a method by Kraskov et al. [13],
which estimates mutual information and entropy directlye Tifferential joint entropy of these variables is given by

h(X,Yj) = %In((Zﬂe)zcriz(l— R?)) (16)

We can then approximate the discrete joint and marginabpigs using Eq. 8.

Fig. 3(2) compares four of these methods, where the solidesirepresent the ground truth entropy and mutual
information for the different 2D variables (color denotés orrelationR;: 0.5 (orange), 0.8 (teal), 0.9 (purple),
0.95 (green) and 0.99 (red)). For each of the methods, wenglstdwenty random draws of 2000 points each. We
see that there is an overall agreement of the different ndethDensity based methods (histogram, AGF and KNN)
estimate the entropies accurately (radial coordinatef) hbue a noticeable discrepancy in the mutual information
(angular coordinate). On the other hand, Kraskov’s metlazdhigher accuracy when estimating Ml, but larger error
when estimating the marginal entropl(Y). Fig. 3(1) compares the methods based on kernel densitpatsin for
different choices of kernel, namely quartic, cubic, Gaaissind Epanechnikov, using 40 bins and an estimate of the
optimal bandwidth [20]. Compared to the previous metholishase are good estimators of the marginal entropies,
but have noticeable bias in the estimation of mutual infdioma Nonetheless, the behavior of each estimator is
consistent for the different variables. This suggests, tatn though the MI diagram is sensitive to the choice of
method and parameters in estimating the entropies, thiveelacation of the distributions in the diagrams is more or
less preserved.

It must be noted that for some of these methods, in partidfalaKDE methods, it is not always the case that
[(X;X) =H(X). This implies that the reference variable does not neciéssapear on the-axis of the diagram.

To counteract this, we normalize the data so that the muitdafmation! (X;Y) is defined relative to the mutual
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FIG. 3: Comparison of different mutual information and entropyireators for a number of random draws of
bivariate normal distributions with marginal standard idéen ox = 1.0 and oy € {0.5,1.5} and correlations
Rxy € {0.5,0.8,0.90,0.95,0.99}. (1) Kernel density estimators with fixed bandwidth andedit choice of kernel.
(2) Other estimation methods, including histograms, adasaussian kernel& nearest neighbors and Kraskov's
method [13] The direct method by Kraskov et al. yields a beiteestimate than density based methods. Compared
to (2), KDE-based methods have a larger error in MIl. Deshigeevvident errors, the relative location of these variables
in the diagram is more or less preserved for each individouaioe of estimator.
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FIG. 4: Mutual Information diagrams before and after scaling fa& #imalysis of climate ensembles. Each variable
represents a temporal and zonal average of average patiapjtfor three different sets of ensembles. Scaling &ssur
that the reference variable, in this case the annual andablbterage, always lies on thxeaxis. Although similar,
some ensembles that seem identical before scaling (e.@..ANN, SLO.JJA) are actually different (with respect to
the reference variable) when the scaling is applied.

informationl (X; X). We achieve this by simply scaling the mutual informatianttsat our diagrams make use of the
scaled mutual information:
~ H(X)
[(X;Y) =1(X;Y)= 17
06Y) =T 5 17)

wherei(X;Y) is theestimatednutual information using one of the methods discussed abt¥eeshow the effect of
scaling in Fig. 4.
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FIG. 5: Resilience to outliers of the MI diagram. We show the Tayllmt for different random draws from three
distributions: uniform (1), binomial (2) and beta (3) Théerence distribution is uniform. When adding outliers (4),
these draws appear in different locations in the Taylormdiag since outliers affect the correlation (notice thag tiu

the design of this experiment, the standard deviation igffetted). A Ml diagram (5), on the other hand, is resilient
to outliers, and draws from the same distribution appeaghtyin the same location in the presence or absence of
outliers.

4.6 Effects of Outliers

An important aspect of mutual information is its relativsilience to the presence of outliers compared to correlatio
To illustrate this property, we have created a number ofdisdata setsi(= 128) from three different distributions —
uniform, binomial and beta (withh = 3 = %). We introduce outliers by interchanging two samples atloam, which
does not change the marginal distributions. The resultisggibutions and the near-uniform reference distribution
are depicted in Figs. 5(1-3), as 2D histograms, togethdr thi¢ir respective marginal distributions. Although this
interchange does not affect the variance or entropy, weatstpe correlation to be more sensitive than the mutual
information to such a perturbation.

Figs. 5(4) and 5(5) show the resulting Taylor and MI diagraMatice how, when using mutual information, the
corresponding distributions cluster together regardiésshether outliers are present or not. In the Taylor diagram
we see a clear separation between the distributions gedeséth outliers (dirty) and those without (clean).

5. RESULTS

We have explored our new diagram in a series of applicatfoms, comparing climate models and different ensemble
runs for uncertainty quantification, to the evaluation afstéring algorithms.
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FIG. 6: Intercomparison study of merged surface air temperatora £MIP3 for the 20th century scenario. In these
diagrams, each data point corresponds to the time seriesnofihaverage in temperature during the 20th century
from models obtained at different climate centers arouedntbrld. (1) shows the time series in a trend plot. (2) The
Taylor diagram with respect to observations. (3) Ml diagraédntice how the differences between the two diagrams
may help understand the different distributions. For edampe see that the cccnycm3 models (blue square and
triangle) have similar correlations and standard deviatitowever, in terms of information, one of them has a higher
mutual information with the observation, possibly sugopesa non-linear relationship between the two.

5.1 Intercomparison Studies

As part of a global initiative to understand climate chartbe,Program for Climate Model Diagnosis and Intercom-
parison (PCMDI) has collected model output of climate satiohs from leading modeling centers around the world.
One of the data sets in this collection, called the Coupledldlidntercomparison Project (CMIP), studies output
from coupled ocean-atmosphere general circulation mddatsalso include interactive sea ice, and includes réalist
scenarios, such as the twentieth century scenario, thedustrial control scenario and a scenario that projects 300
years into the future [2].

Here, we study the relationship between the different nwoftalthe annual average of merged surface air tem-
perature in the 20th century. This data set consists of 2letadtbm centers around the world. Understanding the
differences and similarities of the various models helpguantify the uncertainty of climate simulations and inseea
our confidence in conclusions regarding climate change.

Fig. 6(1) shows the average annual temperature time sereath model and the observed temperature. Natu-
rally, it becomes difficult to make sense of the plot and ssggdich models are more similar to the observation. A
pairwise diagram, such as a scatterplot matrix, becomesutge for effective visual exploration. Fig. 6 compares the
resulting Taylor and Mutual Information diagrams with respto observations, which work better as global views.
Mutual information and entropy are computed by estimatireggunderlying PDF using a histogram. Although there
seems to be agreement of which models differ most from thergagons (for example, the idigoals model, purple
circle), a few models are placed differently relative toleather in the two diagrams, suggesting non-linear relation
ships between the different models. For example, the cammpen3t63 model (blue square), appears as similar to
the other cccma model (blue triangle) in terms of correfgtmit not so much in terms of mutual information. As we
will see in the following example, this would not be the cdshése distributions were approximately normal. With
the two diagrams, studying these differences may help iigemiore accurately the similarities and dissimilarities
between models.
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FIG. 7: Uncertainty quantification of climate models. In these diags we compare several output variables of a
climate simulation involving FLUT (upwelling long wave fluat the top of the atmosphere). These variables are
formed by seasonal and zonal averages of FLUT. The seasos@lges (shape) represent the annual flux during
summer months (in the northern hemisphere — JJA) and wirdethm (DJF) and the zonal averages (color) comprise
three latitudinal zones in the northern (NHI, NMD, NLO) arabthern (SHI, SMD, SLO) hemispheres. For each of
these, we plot the output for three ensembles, containidg &6 and 1318 runs each. Although the two diagrams
are different, we notice that relative locations are simalad one diagram can be explained (mostly) as a warping of
the other. Nonetheless, we are able to stress the diffesanoee easily in the MI diagram, which suggests similar
entropies along each of the sets, but different degrees tfahimformation. Note how, while in the Taylor diagram at
least two of the ensembles agree ( see how some pairs of figsase color and shape, corresponding to the same
seasonal and local average but using different ensemiviedap), they are more clearly separated in the MI diagram.

5.2 Analysis of climate ensembles

Another application deals with the comparison of a numbe&nsemble runs to quantify uncertainty and sensitivity in
climate simulations. To this end, climate scientists halemiified a subset of 27 input parameters of the Community
Atmosphere Model (CAM), and are studying the impact of pddtions of these parameters in climate-related out-
puts, such as the upwelling long wave flux at the top of the aphere (FLUT) and total precipitation rate (PRECT).

To explore this high dimensional space, simulations areusing different parameter sampling strategies, such
as latin-hypercube and one-at-a-time sampling. Fig. 4 shbes M| diagram for PRECT, the total precipitation rate,
for different annual and seasonal averages (DJF for Ded-darmonths, JJA for Jun-Jul-Aug months), and zones
(Northern/Southern High, MeDium and LOw zones). For eacthe$e, we compare three different sets of ensemble
runs, containing 561, 896 and 1318 runs each. Fig. 7 defiet§aylor and MI diagrams for FLUT. To estimate
entropy, we compute the probability density function viare density estimation using the optimal bandwidth for a
bivariate normal distribution and Epanechnikov kernelg. 8&e that in both the Taylor and MI diagrams, the relative
locations of the data points are fairly well preserved, kaowing one of the diagrams explains to some extent the
other diagram. This is not too surprising, since these ehkemare obtained from annual and/or zonal averages, and
the resulting distributions are approximately Gaussianwhich correlation and mutual information tell a similar
story. Nonetheless, we observed both for PRECT and FLUTthsatifferences within each zone and season are
more pronounced in the MI diagram. Specifically, we noticat tine first and last set, containing 561 and 1319
runs, respectively, differ consistently from the secontd kefact, the second set differs from the others in that iswa
obtained withone-at-a-timgOAT) andMorris-one-at-a-timgMOAT) sampling strategies, where one input parameter
is changed between consecutive runs [21].
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FIG. 8: A Ml diagram that summarizes a study comparing several keftastering algorithms for four data sets: Iris
(blue), Breast (green), E-coli (red) and Glass (yellow)][ZPhe algorithms compared are: 1:FCM-I-fs, 2:FCM-II-
fs, 3:FCM-I-km, 4:FCM-II-km, 5:SVC, 6:FCM-I, 7:FCM-II, &means. In agreement with the authors’ own study,
we see that no single method appears to outperform the othgrshe diagram clearly suggests that feature space
clustering consistently performs well. In contrast, weéavbetter sense of how poorly methods that incorporate
kernelization (3,4) and SVC (5) behave in relation to theeothethods and the ground truth (where Ml is practically
zero). This diagram proves to be an essential tool to suramarat otherwise has required table comparisons.

5.3 Clustering and Classification

As mentioned above, unlike the Taylor diagram, our MI diagigan also be applied to depict similarities between
symbolic data. An important application of this is the stuafyclassification and clustering algorithms. Mutual
information (and VI) has become a practical metric for meaguthe performance of clustering algorithms. In
general, once a ground truth classification is known cihvefusion (or matching) matridefines the joint probability
associated with two instances of the classification datas;Tgiven the set of class&sand predicted clustels, the
probability P(x;,yj) = Ni j /N, whereN, j is the number of responses of the confusion matrix at pesitipandN is

the number of elements in the classification data. Since avefsdbm discrete distributions, we can directly compute
entropy and mutual information without the need for an estion step.

Our MI diagram thus provides a single view to compare and nirefieeences about the performance of different
clustering methods. We applied our technique to the resfiliscomparison study of several kernel clustering algo-
rithms [22]. This study consisted of five classification pesbs (of which we depict four), and compared the result
of eight different algorithms: 1:FCM-I-fs, 2:FCM-II-fs,:BCM-I-km, 4:FCM-II-km, 5:SVC, 6:FCM-I, 7:FCM-II,
8:Kmeans. FCM refers to Fuzzy c-means methods, with twewdifft objective functions, one being an L-2 func-
tional (1) and the other introducing a maximum entropy ciie (I1). These are algorithms 6 and 7. In addition, two
variants of these are included in the study, one clusterirfgature space (1,2) and the other using a kernelization
method (3,4). To complete the study, the authors compareipp@t Vector clustering ankkmeans [22]. Fig. 8
shows the normalized MI diagram (i.e., entropies are nde@dlso that the entropy of the reference variable is 1) that
summarizes the results of their study for four data sets:(lbiue), Breast (green), E-coli (red) and Glass (yellow).

Another example is depicted in Fig. 9, where we decomposeaaiaie scalar function into homeomorphic con-
tours (aka. contour tree segmentation). In this study,rteddy Correa and Lindstrom [23], the authors show that the
choice of neighborhood graph to connect sparse samplessdtitiction has an effect on the quality of the decompo-
sition. Here, we employ the MI diagram to graphically sumizeathe results reported in this study, which concludes
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FIG. 9: Evaluating contour tree segmentations of a 2D terrain. I8mho the clustering problem, we evaluated the
performance of different neighborhood graphs [23] in eating the topology of a 2D terrain and computing its con-
tour tree decomposition. The graphs are the Delaunay Tulatign (DT), the Gabriel graph (gg), the relaxed Gabriel
graph (gg-r) andk-nearest neighbor graph (KNN6). The insets on top show tefight) the true decomposition of
the terrain, the one provided by the relaxed Gabriel grafso (@milar to dt—not shown), and the one given by the
Gabriel graph (also similar to knn—not shown). We see thaktim® clustering is much noisier and we should expect
a higher entropy, as confirmed by our MI diagram. Each poirthendiagram depicts the mutual information and
entropy from the resulting decomposition compared to tleeugd truth decomposition, for different levels of noise
reduction. We see that dt and gg-r are considerably betierttie other two and more resilient to noise.

that neighborhood graphs such as the Delaunay Triangnl@fid) and the Relaxed Gabriel graph (gg-r) are more
accurate and resilient to noise than other graphs, sucheaGdbriel graph (gg) anki-nearest neighbors (KNN6).
Figs. 9(1), 9(2) and 9(4) show the ground truth contour tegmeentation (reference) and the segmentation for the
relaxed Gabriel and Gabriel graphs, respectively. Thetgrdpr the Delaunay triangulation (omitted) and KNN are
very similar to Fig. 9(2) and Fig. 9(4), respectively. Thaglam shows these results for a sequence of decomposi-
tions corresponding to various levels of topological demgj. For lower noise thresholds, graphs such as gg and knn
result in noisier decompositions and increase the entrdfly nespect to the ground truth decomposition computed
on a dense regular grid. The gg-r graph is much less sengitiifee noise level, and only marginally increases the
entropy. On the other hand, it is clear that the Delaunapgritation does not increase the entropy, and should result
in better contour tree segmentations. The Ml diagram satlgioondenses the results of the study and allows us to
make inferences about the information shared by any giveropaegmentations.

6. LIMITATIONS

Despite the many advantages of mutual information overetation, there are some limitations of our proposed
diagram. First, unlike correlation, which can be computasilg for random variates, estimation methods for entropy
and mutual information are more elaborate. A common appriio approximate the joint and marginal probability
functions via histograms or kernel density estimates, bigt implies setting parameters such as the bin size, the
bandwidth and choice of kernel. The choice of these paramétes a global effect on the resulting MI diagram.
Although in our observations, most of the relative locati@me preserved, a more informative Ml diagram should
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represent the envelope of possible locations based onpteudthtropy and MI estimation methods. Second, in our
plot there is no distinction between negative and posittveatations. In certain applications, this may be impdrtan
We believe that a combination of the Taylor diagram and thelldgram is more effective for discovering important
relationships between distributions, such as non-litieariAlternatively, one can incorporate correlation atachidard
deviation in the MI diagram with additional graphical ditries such as color or texture.

7. SUMMARY

We have presented the Mutual Information diagram, a nowjrdim that relates three key information-theoretic
measures: entropy, mutual information and variation adrimfation. In our preliminary studies and feedback from
climate scientists, we have identified several use casabifodiagram. (1) Similar to the Taylor diagram, our Mi
diagram proves to be crucial in understanding how certatpuiwariables from different simulations and models
differ from a reference model or observations. Trend lined scatterplots often obscure statistical or information
differences that this plot can succinctly represent in arimspace. (2) When exploring multi-output data, one can
generate MI diagrams for the different variables, eachgisirdifferent variable as a reference. Together, these
diagrams encode the relationships between differentblasgin terms of dependence and mutual information) that
may be too cumbersome to visualize using more traditiorateplot matrices. (3) Our diagram directly provides a
space to visualize the quality of density estimation meshadeful for information-theoretic measures such as pytro
and information, as shown in Fig. 3. This diagram helps ustifyanot only the uncertainty inherent in the data, but
also the added uncertainty when estimating probabilitysifefunctions. (4) A variety of applications readily cortepi
information-theoretic quantities to measure the qualityreir algorithms or visualization parameters. We havensho
an example that uses the Ml diagram to visualize the accurfadystering methods, but it can be further extended to
evaluate techniques that use entropy in visualizatiorh) ag@utomatic view selection for volume visualization [24]
There are numerous challenges involved in ensuring an atecastimate of information-theoretic quantities for
different domains, and our novel diagram not only benefdmfprogress in this area, but also becomes a useful plot
for evaluating the different methods.
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